

Report of CWG Non-target screening

Juliane Hollender

eawag

Virtual meeting on Nov 17, 2020: 87 Participants

9:00 - 9:05	Welcome & Introduction	Juliane Hollender
9:05 – 9:15	Status of SusDat	Emma Schymanski
9:15 – 9:25	Status of MassBank	Tobias Schulze
9:25 – 9:40	Update of DSFP & application examples	Nikiforos Alygizakis
9:40 - 9:50	Update on ILS NTS on passive samplers	Saer Samanipour / Ian Allan
9:50 - 10:00	Update on ILS NTS & biota	Lutz Ahrens
10:00 - 10:10	Update on NormaNews2	Kevin Thomas /Saer Samanipour
10:10 - 10:20	Update on semi-quantification trial	Anneli Kruve
10:20 - 10:30	Suspect/Nontarget screening of dust	Peter Haglund
Break		
10:50 – 11:10	Suspect/non-target screening in Joint Danube Survey 4	Jaroslav Slobodnik /Tobias Schulze
11:10 – 11:20	Expanding and validating the chemical domain of current NTS methodologies	Nikolaos Thomaidis
11:20 – 11:30	Open Chemical data	Juliane Hollender
11:30 – 12:00	Discussion of guidance document draft	Martin Krauss
12:00 – 12:30	Future activities and discussion	All

Update on NORMAN-SLE / SusDat Suspect List Exchange/Substance Database

🕋 NORMAN WEBSITE | 🔘 NORMAN DATABASE SYSTEM | 🕋 HOME | 🖷 LOGIN

NORMAN SUBSTANCE DATABASE

NORMAN Suspect List Exchange - NORMAN SLE

The NORMAN Suspect List Exchange (NORMAN-SLE) was established in 2015 as a central access point for NORMAN members (and others) to find suspect lists relevant for their environmental monitoring question. This Exchange documents all individual collections that (will) form a part of NORMAN SusDat, the merged NORMAN Substance Database (DOI: 10.5281/zenodo.2664077).

Assoc. Prof. Dr. Emma L. Schymanski

FNR ATTRACT Fellow and PI in Environmental Cheminformatics Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg Email: <u>emma.schymanski@uni.lu</u> and @ESchymanski

...plus many, many collaborators!

3

NORMAN NTS CWG Virtual Meeting, November 17, 2020. Slides: DOI: 10.5281/zenodo.4276117

NORMAN Database System (NDS)

NORMAN organises the development and maintenance of various web-based databases for the collection & evaluation of data / information on emerging substances in the

environment

https://www.norman-network.com/nds/

SEARCH All Databases

Searching for individual substance or group(s) of substances in all databases

Note: Click on a link below to go to an individual database home page

Substance Database

A merged list of NORMAN substances; Central Database to access various lists of substances for suspect screening and prioritisation

Suspect List Exchange

Central Database to access various lists of substances for suspect screening and prioritisation

φ

Digital Sample Freezing Platform

A database of mass chromatograms obtained by LC-HR-MS for retrospective screening of environmental samples

+-×=

Substance Factsheets

A summary information on individual substances from all NORMAN Database System modules

Chemical Occurrence Data

A database of geo-referenced monitoring data on emerging substances

SLE

SusDat

Antibiotic Resistance Bacteria/Genes

A database of ARBs/ARGs in environmental matrices

Indoor Environment

A database of data in indoor environment matrices

Ecotoxicology

SARS-CoV-2 in sewage

A platform for systematic collection and evaluation of ecotoxicity studies for harmonised derivation of environmental quality standards

MassBank Europe

A database of mass spectra of emerging substances to support identification of unknown substances

 $\mathbf{\hat{D}}_{0}^{0}$

Passive Sampling

A database of data obtained with passive samplers

Prioritisation

Results of prioritisation of NORMAN substances using the NORMAN Prioritisation Framework

Bioassays Monitoring Data

A database of data obtained by analysis of environmental samples with bioassayss

https://www.norman-network.com/nds/ & https://www.norman-network.com/nds/SLE/ & https://www.norman-network.com/nds/susdat

NORMAN Suspect List Exchange (SLE)

INORMAN WEBSITE | 🚱 NORMAN DATABASE SYSTEM | IN HOME | 🔊 LOGIN

https://www.norman-network.com/nds/SLE/

NORMAN SUBSTANCE DATABASE

NORMAN Suspect List Exchange – NORMAN SLE

> 74 lists > 147,058 substances

NORMAN Suspect List Exchange (SLE) – New Lists

S62	NORMANEWS2	NormaNEWS2:	NormaNEWS2 as	XLSX	(, <mark>CSV</mark> (03/02/2020)			
		Retrospective Screening of New Emerging Contaminants	CompTox NORM/	S68	HSDBTPS	Transformatic Extracted from Content in Pu	on Products n HSDB bChem	HSDBTPS Structures CSV and Transformations CSV (16/05/2020)
S63	UBADWGW	Substances Detected in Drinking (DW) or Groundwater (GW)	UBADWGW Origi UBADWGW as XI CompTox UBADV	S69	LUXPEST	Pesticide Scro Luxembourg	eening List for	Comp Tox HSDBTPS List LUXPEST XLSX, CSV (28/05/2020) CompTox LUXPEST List
S64	NATOXAQ	NaToxAq: Natural Toxins and Drinking Water Quality - From Source to Tap	NaToxAq as XLSX CompTox NATOX	S70	EISUSGCEIMS	Environmenta El-MS suspec	al Institute GC- t list	EISUSGCEIMS XLSX, CSV (15/06/2020) CompTox EISUSGCEIMS List
				S71	CECSCREEN	HBM4EU CEC Screening Lis Chemicals of Concern Plus	screen: t for Emerging Metadata and	CECscreen as XLSX, CSV, README (1/7/2020) CECscreen Metabolite DB as XLSX, CSV (1/7/2020) CECscreen CompTox DB as XLSX, CSV (1/7/2020)
S65	UATHTARGETSGC	University of Athens GC- APCI-HRMS Target List	UATHTARGETSG			Predicted Pha Metabolites	ase 1	CECscreen OPERA Predictions as XLSX, CSV, README (1/7/2020) CompTox CECSCREEN List
S66	EAWAGTPS	Parent-Transformation Product Pairs from Eawag	EAWAGTPS XLS	S72	NTUPHTW	Pharmaceutic Substances S from National University	ally Active Suspect List Taiwan	NTUPHTW as XLSX, CSV (22/7/2020) CompTox NTUPHTW List
S67	TBUTYLPHENOLS	List of tert-butyl phenols from KEMI	TBUTYLPHEOLS CompTox TBUTY	S73	METXBIODB	Metabolite Re Database fror BioTransform	action n er	MetXBioDB substances as CSV (06/11/2020) MetXBioDB Transformations as CSV (06/11/2020) CompTox METXBIODB List

NORMAN-SLE on CompTox Dashboard

https://comptox.epa.gov/dashboard/chemical_lists/?search=NORMAN

Mono.Mass:53.026549

Huge thanks to Antony Williams and CompTox Chemicals Dashboard team for this!

Mono.Mass:179.069477

Mono.Mass:151.063329

DOI: <u>10.1186/s13321-017-0247-6</u>

8

Mono.Mass:312.063388

NORMAN-SLE on Pub Chem

S66 | EAWAGTPS | Parent-Transformation Product Pairs from Eawag ?

DOI: 10.5281/zenodo.4266449

o <u>https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101</u>

PubChem Classification Browser

Help

Browse PubChem data using a classification of interest, or search for PubChem records annotated with the desired classification/term (e.g., MeSH: phenylpropionates, or Gene Ontology: DNA repair). More...

Select classification	Search selected classification by							
NORMAN Suspect List Exchange 🔹	Keyword •	Enter desired search term	Search					
Classification description (from NORMAN Suspect List Exchange) The NORMAN Suspect List Exchange (NORMAN-SLE) is a central access point for NORMAN members (and others) to find suspect lists relevant for their environmental monitoring questions. More								
Data type counts to display Display zero count nodes? None Compound Yes No								
Browse NORMAN Suspect List Exchange	Tree							
 NORMAN Suspect List Exchange Classification 	on ? / 132,750							
S13 EUCOSMETICS Combined Inv	ventory of Ingredients Emp	oloyed in Cosmetic Products (2000) and Revised Inventory (2	2006) ? 4,128					
S25 OECDPFAS List of PFAS from	the OECD ? 3,680							
S50 CCSCOMPEND The Unified Control	S50 CCSCOMPEND The Unified Collision Cross Section (CCS) Compendium ? 648							
S60 SWISSPEST19 Swiss Pesticide	es and Metabolites from k	Kiefer et al 2019 ? 1,355						
S61 UJICCSLIB Collision Cross See	ction (CCS) Library from l	JJI ? 574						

258

Transformation Products: Filling the Data Gaps!

Pub Chem NORMAN Suspect List Exchange												
 NORMAN Suspect List Exchange Classification ? / 117,037 												
	S13 EUCOSMETICS Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and Revised Inventory (2006) ? 4,122											
	S25 OECDPFAS List of PFAS from the OECD ? 3,680											
S50 CCSCOMPEND The Unified Collision Cross Section (CCS) Compendium ? 647												
S60 SWISSPEST19 Swiss Pesticides and Metabolites 7 1 358												
Ľ	 S61 UJICCSLIB Collision Cross Section (CCS) Library from UJI 2 574 											
(S66 FAWAGTPS Parent-Transformation Product Pairs from Fawag 2 259											
	 S68 HSDBTPS Transformation Products Extracted from H 	ISDB Content in	PubChem	97	-							
	 S69 LUXPEST Pesticide Screening List for Luxembourg 	7 386										
	 S72 NTUPHTW Pharmaceutically Active Substances from 	Pub Ch	em Terbi	uthylazine ((
	S00 SUSDAT Merged NORMAN Suspect ist: SusDat				compound)							
	S01 MASSBANK NORMAN Compounds in MessBank EL	8.5 Transfo	rmations				? Z					
		Page 3 of 25 items	View More Rows	& Details 🔼			上 Download					
	S02 STOFFIDENT HSW1/LIU STOFF-IDENT Database of W											
	S03 NORMANCT15 NORMAN Collaborative Trial Targets an				SORT BY	Please Choose One	• •					
	S04 UJIBADE Target List from UJI used in Bade et al 2015	Predecessor	Predecessor	Transformation	Successor	Successor Name	Evidence DOI					
	S05 KWRSJERPS KWR Drinking Water Suspect List ?	Image	Name		image							
	S06 ITNANTIBIOTIC Antibiotic List from the ITN MSCA ANS	_				6-Chloro-1 3 5-						
	S07 EAWAGSURF Eawag Surfactants Suspect List ?		Terbuthylazine	Mammalian metabolism		triazine-2,4- diamine	10.5281/zenodo.3827					
	S08 ATHENSSUS University of Athens Surfactants and Susp	*										
	S09 PFASTRIER PFAS Suspect List of fluorinated substance	+ .			+ .	Tarbut dating						
			Terbutylazine	Deethylation		desethyl	10.1007/s13361-017-					
		•			•							

MassBank

http://massbank.eu

since 2012

Tobias Schulze, UFZ Steffen Neumann, IPB Emma Schymanski, LCSB

88168 unique spectra (MS2, MS1, some MSn; ESI, EI, APCI...) 14838 unique compounds (anthropogenic, metabolites, TPs)

DOI: 10.5281/zenodo.4276835

MassBank – Representation in compound databases PubChem

Thanks to Evan Bolton and his team at NIH!

PubChem

https://www.ncbi.nlm.nih.gov/pcsubstance?term=%22MassBank%20Europe%22%5BSourceName%5D%20AND%20hasnohold%5Bfilt%5D

DOI: 10.5281/zenodo.4276835

MassBank Future! NFDI4Chem proposal (German Research Council)

Funded 2020-2025 from October 2020

Steinbeck et al.2020, DOI: 10.3897/rio.6.e55852 https://www.nfdi4chem.de https://www.nfdi.de/en-gb

- Development and maintenance of a national research data infrastructure for the research domain of chemistry in Germany
- Innovative and easy to use services and novel scientific approaches based on re-use of research data
- MassBank will be embedded in the Core Repository infrastructure

Transfer of massbank.eu domain to IPB to consolidate status of basic research data infrastructure and to establish permanent funding in future

https://github.com/rformassspectrometry/Spectra

Paper on QA / QC of mass spectral libraries

MassBank Europe – Future plans

- **Paper** on new MassBank server technologies &10 Years MassBank Europe
- Further development of MassBank server platform (e.g. database and applications programming interface, curation of records, import and export of records)
- Fostering the integration of MassBank with other mass spectral and metadata platforms (e.g. MoNA, ChemSpider, StoffIdent, US EPA CompTox, NORMAN SusDat, PubChem)
- Discussion with vendors for better integration of vendors' software with MassBank
- Prioritisation of compounds missing in MassBank with WG1, purchase, measurement and upload of mass spectra to MassBank
- Integration of UoAthens RTI into records
- Integration of ionisation efficiency into records
- Making MassBank more FAIR (e.g. better integration of ontologies, linked to NFDI4chem)

Update of DSFP and application examples

Nikiforos Alygizakis

NORMAN NTS CWG meeting 17 November 2020 Virtual meeting

DP

This project is funded by the European Union

Enrichment of the database

https://norman-data.eu/Verification MAP2019/

https://norman-data.eu/Verification MAP/

NTS CWG 2020

+153%

- Black Sea screening (All sampling years)
- LIFE APEX top-predator and their prey screening
- JDS4 all matrices screening
- WWTP effluents screening
- Dnieper monitoring
- Dniester monitoring

00

- Siverskyi Donets monitoring
- National campaign of Montenegro monitoring
- Antarctic Station Vernadsky
- Raptor screening (various campaigns and many collaborators)

GA2019

Updated technical guide

· · · · · · · · · · · · · · · · · · ·
Merman
Main Page Batch Mode More tools -
Contributed Samples Results Chromatograms Interactive Map Help
Technical guide for acquisition and archivation of high-resolution mass
spectrometry (HRMS) chromatograms to NORMAN Digital Sample
Freezing Platform (DSFP)
Contents
1. General recommendations before and during instrumental analysis
2. Post-data acquisition of Bruker files
2.1. Conversion of Bruker .d data files to mzML
2.2. Separation of bbCID collision energy channels
2.3. Contribution of HRMS chromatograms to DSFP
3. Post-data acquisition of Agilent files15
4. Post-data acquisition of Waters files
5. Post-data acquisition of Thermo Fisher Scientific files
6. Post-data acquisition of AB Sciex

Tutorial video

https://www.youtube.com/watch?v=pe3mP7Awa5Q

NORMAN Digital Sample Freezing Platform (DSFP)

Contents

- 1. Single search module
- 2. Batch search module
- 3. Output of batch search module
- 4. Contribute module
- 5. Output of contribute module

Improvements

GC-EI/APCI-HRMS module

Select chromatograms

Show 10 🗸 entries	s			1	Search:	
	Select chromatograms	Select	ber page Country 👍	Matrix	🔺 Proi	ect 🔺
I440 ⊕ 1439 ⊕ 1438 ⊕ 1437 ⊕ 1435 ⊕ 1433 ⊕	Show 10 ✓ entries Id GC- Sd Id GC- Sd Id H Id Id H Id Id Id H Id Id H Id Id H Id Id H Id Id Id Id Id Id	elect chromatograms	Select per page Country Select per page Country Select per page Country H-QTOFF Image: All the select per page All the select per page WRI_GC-EI-QTOF_Matrix spike 2000 ng MAXX_Passau_Germany_01.07.2019_ILS JDS4_R-SW-LS.xlsx Getto per page WRI_GC-EI-QTOF_Matrix spike 2000 ng MAXX_Passau_Germany_01.07.2019_ILS JDS4_R-SW-LS.xlsx Getto per page	ntry († many W many W	Search: rix 1 + F Search: Matrix 1 + A All Ater-Surface water-River water ter-Surface water-River water	Project
1432 ⊕ 1431 ⊕	1435 ⊕ 1434 ⊕ 1433 ⊕	1335 ⊕ 1334 ⊕ 1333 ⊕ 1332 ⊕	Show 10 v entries	Country	Search:	Project
	1432 ⊕ l 1431 ⊕	1331 ⊕ □ WRI_	UoA_GC-APCI-QTOF_River water 47 Downstream Ruse - Giurgiu Marten HORIZON_Ruse_Bulgaria_02.07.2019_ILS JDS4_R- SW-LS_GRB.xlsx UoA_GC-APCI-QTOF_River water 24 Budapest downstream - No bridge HORIZON_Budapest_Hungary_07.07.2019_ILS	Bulgaria	Water-Surface water-River water Water-Surface water-River	ILS JDS4
	Showing 1 to 10 of 63 entrie	- □ WRI_G	JDS4_R-SW-LS_GRB.xtsx 1323 ⊕ U0A_GC-APCI-QTOF_River water 06 Jochenstein HORIZON_Passau_Germany_01.07.2019_ILS JDS4_R-SW-LS.xtsx 1322 ⊕ U0A_GC-APCI-QTOF_Blank HORIZON_Passau_Germany_01.07.2019_ILS JDS4_R-SW-LS.xtsx	Germany	water Water-Surface water-River water Water-Surface water-River water	ILS JDS4
		1328 ⊕ □	1321 ⊕ □ UoA_GC-APCI-QTOF_Matrix spike 2000 ng MAXX_Passau_Germany_01.07.2019_ILS JDS4_G022120 xlsx 1320 ⊕ □ UoA_GC-APCI-QTOF_Matrix spike 200 ng MAXX_Passau_Germany_01.07.2019_ILS JDS4_G022120 xlsx	Germany Germany	Water-Surface water-River water Water-Surface water-River water Water Surface water River	ILS JDS4
			1319 ⊕ UoA_GC-APCI-QTOF_Matrix blank MAXX_Passau_Germany_01.07.2019_LS JDS4_G022120.xlsx 1318 ⊕ □ UoA_GC-APCI-QTOF_River water 47 Downstream Ruse - Giurgiu Marten MAXX_Ruse_Bulgaria_02.07.2019_LLS JDS4_R-SW-LS_GRB.xlsx 1318 ⊕ □ UoA_GC-APCI-QTOF_River water 24 Budapest downstream - M0 bridge MAXX_Budapest_Hungary_07.07.2019_LLS JDS4_R-	Germany Bulgaria	Water-Surface water-River water Water-Surface water-River water Water-Surface water-River	ILS JDS4
			1317 ⊕ SW-LS_GRB xlsx 1316 ⊕ UoA_GC-APCI-QTOF_River water 06 Jochenstein MAXX_Passau_Germany_01.07.2019_ILS JDS4_R-SW-LS.xlsx	Hungary Germany	Water-Surface water-River water	ILS JDS4
			Showing 1 to 10 of 45 entries altered from 1,140 total entries)	Previous	1 2 3 4	5 Next

Indicative examples of 'safety-net' DSFP analysis

Main Page Batch Mode Contribute	More tools -	Help						Biofena	C [®] λοφαινάκη με λεπτό υμέν δισκία 100 m
Copy Print Download View Columns	Show 100 V	entries					Sear	ch:	
Select per page	Retention time [min]	Mass of ion 🕴 [m/z]	Intensity	MS/MS available	Proposed substance	Level of confirmation of identification	RTI ∳	Qualifier lons [mz/RT (min)/Intensity]	
All	AI		4	A	All	All		All	
UoA_LC-ESI-QTOF_LIFE APEX 26 Harbour Porpoise liver from UK 01_Kingston upon Hull_UK_01.01.2017_LIFE APEX_34810	9.14	236.1639	56000	Yes	Padimate	Exact mass Plausible RT and 6 fragments	602.1	218.1538/9.14/172600 120.0800/9.14/1760 106.0649/9.14/1264 69.0689/9.14/480 65.0384/9.14/276 57.0694/9.14/640	
UoA_LC-ESI-QTOF_LIFE APEX 27 Harbour Porpoise liver from UK 02_Kingston upon Hull_UK_01.01.2017_LIFE APEX_34809	9.14	236.1642	54080	Yes	Padimate	Exact mass Plausible RT and 8 fragments	602.1	218.1538/9.14/166416 120.0801/9.14/2368 106.0646/9.14/1268 94.0663/9.14/300 69.0699/9.14/344 65.0376/9.14/308 57.0689/9.14/384 55.0533/9.14/472	
UoA_LC-ESI-QTOF_LIFE APEX 29 Harbour Porpoise liver from UK 04_Aberdeen_UK_01.01.2017_LIFE APEX_34806	9.13	236.1635	14004	Yes	Padimate	Exact mass Plausible RT and 3 fragments	600.8	218.1538/9.13/46972 120.0797/9.13/620 106.0666/9.13/264	
UoA_LC-ESI-QTOF_LIFE APEX 30 Harbour Porpoise liver from UK 05_Liverpool_UK_01.01.2017_LIFE APEX_34808	9.14	236.164	25624	Yes	Padimate	Exact mass Plausible RT and 6 fragments	602.1	218.1535/9.14/78696 148.0778/9.14/360 120.0812/9.14/696 69.0684/9.14/284 57.0689/9.14/504 55.0538/9.14/428	

SUN

UoA_LC-ESI-QTOF_LIFE APEX 27 Harbour 218.1532/9.14/49328 Porpoise liver from UK Exact mass 120.0798/9.14/812 9.14 Plausible RT 03_Edinburgh_UK_01.01.2019_LIFE 236.1636 18560 Yes Padimate 602 69.0684/9.14/260 and 5 fragments 57.0688/9.14/580 APEX_34807 55.0528/9.14/456

Recursive analysis and storage of reports in a separate DB

JDS4 screening result

NORM	AN ID			Compou	nds			Formu	ıla		CA	S_RN		SMILES	InCh	I InChil	Key	
NS0003	32465	4-(4	-Met	hoxypher	yl)buta	an-1-o	bl	C11H16	502	CAS_RN: 52244-70-9			0-9	Lccc(CCCC	C-10(6-8	-11_TLNO-	UHF	
NS000:	10583	9	,10-D	hydroxy	stearic	acid		C18H36	504	CAS	_RN	: 120-87	-6	C(CCCCC	C(4-11-8	-6-93FMSP	-UH	
NS0003	35021		Oct	tanoic anl	nydride	2		C16H30	003	CAS	RN	: 623-66	-5	:(=0)OC(=	015(17)	9-17ZODZ	UHI	
NS000:	11498		N	onanedio	ic acid			C9H16	04	CAS	RN	: 123-99	-9)00000	CQ-1-3-5-7-9GNYIS-UHF			
PNECfw ug l	PNECmarine	ug I PNE	sed ugk	kg dw PNECbi	io ugkg wv	N	Scier	ntific name	Endpoint D	Ouration Effe	ct	AF		PNEC type		Uncertainty I	PNEC	
9.81	0.98		56.7		306		Da	phnia magna	a LC50 48	3 h mortality		100	0	P-PNEC pred		Covered by N	1odel	
0.33	0.033		0.53		608	Selen	nastrum	n capricornu	tum EC50	72 h immo	bilisat	ion 100	0	P-PNEC pred	Exp	erimental proo	f is needed	
0.32	0.032		36.4		136	Selen	nastrum	n capricornu	tum EC50	72 h immo	bilisat	ion 100	0	P-PNEC pred		Covered by N	/lodel	
68.6	6.86		862		136		Da	phnia magna	a LC50 48	3 h mortality		100	0	P-PNEC pred		Covered by N	1odel	
MassErro	orScore	RTI sco	re Is	otopicFit	Score	Plausi	ibilit	yScore	Spectra	alSimilari	ty I	NumFra	gments	Predicted	Fragmen	nents group		
0.9	1	0.89		0.61		C	0.975	9752 0.7752				17	,	TR	UE	P80	P803_17	
0.8	8	0.76										13		TRUE		N4099_1		
0.7	9	0.61		0.57			0.35	5	0.37			14		TRUE		P34	41_1	
0.9	7	0.92										5		FA	LSE	N91	.87_3	
FoA Sed	FoA Bio	ta FoA	GW F	FoA EWW	FoA SV	N FoE	Sed	FoE Biot	a FoE G	W FoE E	ww	FoE SW	EoE Sec	d EoE Biota	EoE GW	EoE EWW	EoE SW	
100	100	7	1	73	100	(0	0	0	()	0	0	0	0	0	0	
75	100	10	0	100	51	7	75	0	11	10	00	31	1	0	6	66	5	
100	100	10	0	82	41	1	00	7	8	8	2	9	4	2	2	28	3	
50	100	10	0	100	73	(0	0	14	()	0	0	0	2	0	0	
ExposureScore_Water_KEMI HazScore_EcoChronic_KEMI			EMI		Popularit	y Chemic	al DBs		Category									
	0.09			0.12	2				0.30			ECHA database, 1-10 tonnage						
	0.11			0.02					0.04			additive used in food contract, hydroxy-fatty acid						
	0.13			0.02	1			0.10				ECHA database, 1-10 tonnage						
	0.51			0.01			0.03					industrial chemical, pharmaceutical, antineoplastic agent						

Newly designed module for

NORMAN Database System

Black Sea screening result

Antarctic Stations screening result

Top-predator screening result

UNIVERSITY OF AMSTERDAM Van 't Hoff Institute for Molecular Sciences

Interlab study NTS on passive samplers

Goal: Applicability of passive sampling extracts for NTS Evaluation of data processing tools

Total number of labs providing data: 21 in 12 countries

- Good coverage of instruments & columns
- Internal standards were mostly detected
- Mass error < 5 mDa
- Large retention time differences

Organizers: Niva, UvA, Inrae

Update on ILS NTS in biota

Wiebke Dürig¹, Oksana Golovko¹, Jon Benskin², Merle Plassmann², Peter Haglund³, Nikiforos Alygizakis^{4,5}, Maria-Christina Nika⁵, George Gkotsis⁵, Nikolaos Thomaidis⁵, Lutz Ahrens¹

¹Dept. of Aquatic Sciences and Assessment, SLU, Uppsalo, Sweden ²Dept. of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden ³Dept. of Chemistry, Umeå University, Sweden ⁴Environmental Institute, Koš, Slovakia ⁵National and Kapodistrian University of Athens, Athens, Greece

- Harmonize sample preparation protocols in biota
- Compare suspect screening and NTS workflows
- Assess the range of chemicals detectable in fish tissue

27 Participants Questionnaire (*n* = 24)

Samples, sample preparation, screening

Samples

- Contaminated (Canal) vs non-contaminated (Lake) whole fish (bream)
- Freeze dried fish, spiked and non-spiked extract, standard mix, RTI mix
- Recommended sample preparation for LC- and GC-HRMS
- Suspect and nontarget screening
 - Target screening in spiked samples: 10 known + 40 unknown
 - **Suspect screening** in non-spiked samples from reference and contaminated sites: NORMAN list; confidence level ≥3
 - NTS: 10-fold change reference vs contaminated, anthropogenic origin, most intense compounds (≥10)

Time plan

Retrospective suspect screening for newly identified CECs

15 participants from 14 countries and 4 continents

More info. <u>kevin.thomas@uq.edu.au</u> <u>http://normanews.eu</u>

A new and larger list of CEC suspects newly identified combined with established CECs

	A	D	E	F	G	н		1	1	к	L
1	Name -1	Formula *	CAS 1	ProtectedCAS	r InON .	n InChiKey	* DTJ	GIDs_notAllPublic	* Ionization *	Adduc V	QualifierFragments
2	(2,4-diaminopyrimidin-5-yl)(3,4,5-trimethoxyphenyl)methanone	C14H16N4O4	30806-86-1	CAS_RN: 30806-86-1	InChl=15/C14	H GAAPPIKAF	NZR DTX	GID601017795	Positive	M+H	289.0927;275.0774;259.0824;244.0950;137.0447
3	(RS)-9,10-difluoro-3-methyl-7-oxo-2,3-dihydro-7H-pyrido(1,2,3-de)	C13H9F2NO4	82419-35-0	CAS_RN: 82419-35-0	InChI=15/C13	+ NVKWWNN	UFIC DTR	CSID60143604	Positive	M+H	264.0465;242.0260;224.0141
4	1-(3-carboxypropyl)-3,7-dimethylxanthine	C11H14N4O4	6493-07-8	CAS_RN: 6493-07-8	InChi=15/C118	H WKASGTGX	KDG/ DTX	(SID40215232	Positive	M+H	138.0642;165.0754;193.0707;211.0811;221.10255;249.0972;249.59825;258.6
5	1-cyclohexyl-3-phenylurea	C13H18N2O	886-59-9	CAS_RN: 886-59-9	InCh=15/C13	H WPLYTRWN	MCN DTR	(SID90877268	Positive	M+H	137.0704;94.0648;83.0847;77.0385
6	1-Phenylpropan-2-amine	C9H13N	300-62-9	CAS_RN: 300-62-9	InChI=15/C9H	1 KWTSXDUR	ISIM DTR	GID4022600	Positive	M+H	119.08553;91.05423
7	1,2-Benzisothiazolinone	C7H5NOS	2634-33-5	CAS_RN: 2634-33-5	InChi=1S/C7H	SI DMSMPAJR	RVII/ DTX	(5)05032523	Positive	M+H	132.9967;134.0048;152.01525;153.0182;153.51525
8	1,2,4-Triazole	C2H3N3	288-88-0	CAS_RN: 288-88-0	InChI=15/C2H	3 NSPMIYGK	CUPE DTX	(SID6027131	Positive	M+H	35.01955
9	1,3-dicyclohexylurea	C13H24N2O	2387-23-7	CAS_RN: 2387-23-7	InCN=15/C13	H, ADFIXUON	AIKE DTO	GID3062366	Positive	M+H	143.1168;100.1119;83.0860;61.0400
.0	1,3-diphenylguanidine	C13H13N3	102-06-7	CAS_RN: 102-06-7	InChi=15/C13	H OWRENXEL	UPFZ DTX	(SID3025178	Positive	M+H	195.0904;119.0595;94.0646
1	1,3,4,6-tetramethyltetrahydroimidazo(4,5-d)imidazole-2,5(1H,3H)+	C8H14N4O2	10095-06-4	CAS_RN: 10095-06-4	InChI=15/C8H	1- XUUUSFITJK	OFING DTO	GID60143588	Positive	M+H	142.0975;85.0760
2	1,3,4,6,7,9,9b-Heptaazaphenalene-2,5,8-triamine	C6H6N10	1502-47-2	CAS_RN: 1502-47-2	InCN=15/C6H	6İ YSRV/VDFH	CYRI DTR	CSID40164493	Positive	M+H	177.0627;202.05788;152.0674
3	11-Ketotestosterone	C19H26O3	564-35-2	CAS_RN: 564-35-2	InChi=15/C19	K WTPMRQZ	HUL: DTA	(5108036499	Positive	M+H	121.0639;126.0743;138.09205;159.60115;259.1681;263.1714;303.1953;304.1
4	15-Acetoxyscirpendial	C18H26O5	2623-22-5	CAS_RN: 2623-22-5	InCh=15/C18	H) JEEMX(ZVR)	NKK DTR	GID501017578	Positive	M+H	263.1642;157.0859;245.1536;305.1747
5	17alpha-Ethynylestradiol (EE2)	C20H24O2	57-63-6	CAS_RN: 57-63-6	InChI=15/C208	K BEPYWIDHI	MRZ DTX	(5105020576	Positive	M+H	279.1744;159.08044;133.06480;107.04914
6	17alpha-Hydroxyprogesterone	C21H30O3	68-96-2	CAS_RN: 68-96-2	InChi=15/C21	H DBPWSSGD	ORRH DTD	GID6040747	Negative	M-H	285.1838;293.2021;315.2151
7	2-((8-chloro-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluorooctyl)ovy	C10HCIF20045	763051-92-9	CAS_RN: 763051-92-9	InCh=15/C10	H SZVGUOITO	POP DTR	(51040892507	Negative	M-H	450.9388;198.94938;98.95577;84.99067;82.96085;79.95736
8	2-(2-(Chiorophenyl]amino)benzaldehyde	C13H10CINO	71758-44-6	CAS_RN: 71758-44-6	InCN=15/C13	H DAAHPOZFI	LSFY DTR	CSID20698322	Positive	M+H	177.0563;179.0708;180.0792;214.0411;215.0443;216.0384;224.0455
9	2-(4-Morpholiny()benzothiazole	C11H12N2O5	4225-26-7	CAS_RN: 4225-26-7	InChi=15/C11	H: WUVJGRV8	EYHI DTX	(5)090891505	Positive	M+H	136.02065;150.0361;162.5341;177.0471;221.0743;222.0766;222.57335
¢	2-(Heptafluoropropoxy)-2,3,3,3-tetrafluoropropionic acid	C6HF1103	13252-13-6	CAS_RN: 13252-13-6	InCh=15/C6H	F: CSEBNABA)	WM; DTX	GID70880215	Negative	M-H	284.97790;184.98429;168.98937;134.98748;118.99256;68.99576
1	2-{(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyljoxy}-1,1,2,2-	C8HCIF16O45	756426-58-1	CAS_RN: 756426-58-1	InChI=15/C8H	CIGGOUUEM	ICWE DTR	CSID80892506	Negative	M-H	350.94493;98.95656;82.96061
2	2-Benzothiazolesulfonic acid	C7H5NO352	941-57-1	CAS_RN: 941-57-1	InChi=15/C7H	SI ZCHISMSGO	3805 DTX	(5)080240528	Positive	M+H	134.0049;137.0107;152.0153;160.013;168.991;215.9768;216.9753
3	2-Hydroxycarbamazepine	C15H12N2O2	68011-66-5	CAS_RN: 68011-66-5	InCh=15/C154	H VPZIYMMS	JFWI DTX	(5020218201	Positive	M+H	167.0719;173.5758;186.5836;194.0955;208.07495;210.0905;223.59625;253.0
4	2-Hydroxycarbamazepine	C15H12N2O2	68011-66-5	CAS_RN: 68011-66-5	InCN=15/C154	I: VP2I/MMS	JFWI DTX	GID20218201	Negative	M-H	166.0653;173.0728;207.068;208.0777;251.0834;251.58475
5	2-Morpholinothiobenzothiazole	C11H12N2O52	102-77-2	CAS_RN: 102-77-2	inChi=15/C118	H: MHKLKWCH	YGIB DTX	(5)00021096	Positive	M+H	56.0489;71.0545;104.0324;128.50875;165.97655;166.9836;167.992;194.0292
6	2-Octyl-4-isothiazolin-3-one	C11H19NO5	26530-20-1	CAS_RN: 26530-20-1	InCh=15/C11	H) JPMIIZHYYN	WMI DTX	CSID1025805	Positive	M+H	74.52165;158.04885;169.07045;214.12525;215.1278;216.1215
7	2-Phenyl-1H-benzimidazole-5-sulfonic acid	C13H10N2O35	27503-81-7	CAS_RN: 27503-81-7	InCh=15/C13	H UVCIGUGA	GLD DTR	GID3038852	Positive	M+H	193.07485;194.0819;226.07305;275.0476;276.05115;277.0446
8	2-Trifluoromethyl-benzenesulfonamide	C7H6F3NO25	1869-24-5	CAS_RN: 1869-24-5	InChi=15/C7H	61 AFFPZJFLSD	WZB DTX	(5)080380751	Negative	M-H	145.0264;160.0374;223.9994;224.50205
9	2,2,3 trifluoro-3-(1,1,2,2,3,3 hexafiuoro-3-(trifluoromethoxy)propo	C7H2F12O4	919005-14-4	CAS_RN: 919005-14-4	InCh=15/C7H	2 AFDRCEOKI	COU DTR	(50)40881350	Negative	M-H	250.97601;84.99067
¢	2,4-Diaminobenzenesulfonic acid	C6H8N2O35	88-63-1	CAS_RN: 88-63-1	InCh=15/C6H	BİJVMSQRAX	N2P(DT)	GID3044465	Positive	M+H	61.5275;147.0372
1	2,4-Dichlorobenzoic acid	C7H4CI2O2	50-84-0	CAS_RN: 50-84-0	InChi=15/C7H	4 ATCRIUVQI	KHM DTR	(SID0024977	Negative	M-H	144.9617
2	2431_7-Amino-4-methylcoumarin	C10H9NO2	26093-31-2	CAS_RN: 26093-31-2	InCh=15/C10	H GLNDAGDH	-ISLN DTO	(51040885333	Positive	M+H	120.0807;117.0573
a	2434_7-Diethylamino-4-methylcoumarin	C14H17NO2	91-44-1	CAS_RN: 91-44-1	InCh=15/C14	I AFYCEAFSN	DUX DTR	(5109025035	Positive	M+H	203.0942;188.0707;175.0993;204.1020
	2 Jodgessmand hutsdearbamate	094130002	CEANE E2 4	CAC DN: CEANE E2 6	1+/1+/1C//244	1 MARANCAR	EVER OTA	100000000000000000000000000000000000000	Bacition	Maid	E7 0603-136 00365-164 0190-165 0314-391 0066-393 40875

<u>https://www.norman-</u> <u>network.com/?q=suspect-list-</u> <u>exchange</u>

https://comptox.epa.gov/dashboard/c hemical_lists/NORMANEWS2

 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 <td

- Pharmaceuticals
- Novel PFASs
- Plastic additives
- Long-chain glycols
- Vulcanizers from tyres
- Transformation products (e.g. plastics, pharmaceuticals)
- Mutagens
- Anabolic steroids
- Mycotoxins

QC of suspect list by Emma Schymanski & Antony Williams

Data from a range of matrices submitted

- Wastewater influent and effluent
- Surface waters
- Passive sampler extracts
- Biofilms
- Urine
- Sediment
- Biota
- Bees

Quality assurance & data assessment (1.1.21)

Publication of results (Q2 2021)

Second NORMAN trial – Report by Peter Haglund, Umea

Total: 110 samples

Pool 1 House dust 75 samples

Pool 2 Dust from public buildings 35 samples

- Workshop mid-September
- Samples shipped early October
- Deadline 31 January 2021

26 Labs (22 LC, 14 GC)

European survey: Analysis of individual dust samples

Suspect screening and NTS

NILUESI(-) non-target screeningUniversity of Athens: Wide-cope screening by DSFP or AutoNTS for +70000 compoundsUmeå UniversityNTS using LC-HRMS, LC-IM-HRMS and GCxGC-HRMS

Target analysis

NILU	CPs, Bisphenols, Alkylphenols, dechloranes
IVL	Phthalates and alternative plasticizers
INERIS	PAHs, nitro-PAHs, oxy-PAHs
Recetox?	Flame retardants
?	PFAS

Interested members please contact Peter Haglund! peter.haglund@umu.se

COLLABORATIVE TRIAL ON SEMI-QUANTITATIVE

NON-TARGETED ANALYSIS

Anneli Kruve anneli.kruve@aces.su.se

Nikolaos Thomaidis ntho@chem.uoa.gr

Goal:1.3Comparison of methods2.1

Structurally similar standards
 Parent compound vs TPs
 Close eluting standards
 Chemically most similar standard
 Ionization efficiency based quantification
 Combined approach

Samples

- 1. Water samples spiked with 60 compounds
- 2. Pre- and post-extraction spiked samples in two matrices
- 3. A calibration series for the structurally similar compounds

Tasks for the participants

- 1. Analyze the samples and calibration standards of the structurally similar compounds (a mixture)
- 2. Calculate the concentrations of the compounds with provided methods
- 3. Submit the results together with raw data

Time plan

- 30th of October
- 15th of January
- 30th of March
- Summer 2021 analyzed
- November 2021

Registration closed (50 registered) Samples sent to the participants Analysis results are submitted by the labs Results from the labs have been processed and

Presentation of the results at GA

Laboratory of Analytical Chemistry, Department of Chemistry National and Kapodistrian University of Athens

Expanding and validating the chemical domain of current NTS methodologies:

Nikolaos S. Thomaidis, Reza Aalizadeh, Konstantina Diamanti

Pub©hem 111 million compounds

Instrumentation LC-ESI, GC/LC-APCI

Laboratory of Analytical Chemistry, Department of Chemistry National and Kapodistrian University of Athens

Expected outcomes for 2020-2021:

- Development of a holistic NTS methodology
- Development of a guideline to address the analytical gaps for various chemical classes
 - Development of a scheme with possible correlation of physicochemical properties of
 - compounds and preferable analytical platform
 - Guidance for favorable ionization of compounds and their adducts formation
 - Application of the developed methodology to real samples

NORMAN Guidance on Non-Target and Suspect Screening in Environmental Analysis

Martin Krauss & many others

Why a NORMAN NTS guidance?

- Rapid development of suspect and non-target screening (NTS) mainly using LC-HRMS within the last decade.
- Interest of authorities at different levels to apply NTS in monitoring, prioritisation of compounds and assessment of treatment technologies.
- Guidance on a "best practice" for setting up and running NTS, and a harmonisation of approaches is often requested.
- Huge long-term experience of NORMAN members on NTS
 of various environmental matrices

Topics of the guidance document

Timeline and process

Main Activities for 2020

- Suspect List Exchange
- MassBank
- DSFP
- ILS Biota, Semiquantification, Dust, Passive sampling
- Expanding the chemical domain
- Guidance document