

NORMAN and the ICPDR

Joint Danube Survey 4

Igor Liska, Jaroslav Slobodnik

NORMAN General Assembly
2 December 2020

JDS4 sampling sites: 51 SW, 11 WWTPs, 7 GW, 9 PS, 51 biota, 19 MP...

JDS4 logistics – sample collection and distribution

x...main site number (1-51) y...location in profile (L,M,R, or E)

Several thermo boxes of two dimensions with cooling inserts

Sediment for DNA analysis (sampled by MZB team)

JDS4-x-y-SE_DNA

per one sampling point JDS4-x-y-SE_DNA

1 L, for WRI (SK) JDS4-x-y-SE_SER

Phytobenthos bulk sample for DNA analysis

2 x 0.5 L- JDS4-x-y-PB_DNA (both)

ethanol, undenaturated

2 x sampling trays, cutter, edding marker 792, pencil, tweezers, lab spoon, 3x nitrile gloves (S,M,L), Virkon S -1kg, MS222-Tricaine 100g, two sizes - ZIP BAGS for fish, PP 10 L basket, Al-foil

LVSPE

MAXX

Horizon

Mariani box

Identification of RBSPs via wide-scope target and suspect screening

Dataset of 306,093 data entries in the NDS prioritised

Matrix	No. of substances	Detected	Candidate RBSPs
SW	2608	495	50
Biota	2360	101	19
WWE	2516	465	28
GW	2561	148	47

Suspect screening of 65,000+ substances; ca. 2000 identified; 935 not by wide-scope target screening

JDS4 and revision of the UWWTD

Indicator substances

JDS4 and revision of the UWWTD

	EWW Asten AT	EWW Vratsa BG	EWW Hodonín CZ	EWW Donauwörth DE	EWW Županja HR	EWW Győr HU	EWW Giurgiu RO	EWW Šabac RS	EWW Novo Mesto SI	EWW Bratislava SK	EWW Uzhgorod UA
PAH CALUX	17.7	11.0	14.8	5000	14.2	13.9	5.6	11.8	9.0	27.4	16.1
ERα CALUX	13.0	29.0	24.0	15.0	15.0	8.5	22.0	16.0	2.5	6.2	19.0
Nrf2	6.8	<lod< th=""><th><lod< th=""><th>29.0</th><th>18.0</th><th>16.0</th><th>3.9</th><th>2.4</th><th>2.9</th><th>3.1</th><th>3.3</th></lod<></th></lod<>	<lod< th=""><th>29.0</th><th>18.0</th><th>16.0</th><th>3.9</th><th>2.4</th><th>2.9</th><th>3.1</th><th>3.3</th></lod<>	29.0	18.0	16.0	3.9	2.4	2.9	3.1	3.3
PXR CALUX	<lod< th=""><th><lod< th=""><th>85.7</th><th>41.7</th><th>49.3</th><th>23.0</th><th>25.0</th><th>34.3</th><th>21.0</th><th>28.7</th><th>22.7</th></lod<></th></lod<>	<lod< th=""><th>85.7</th><th>41.7</th><th>49.3</th><th>23.0</th><th>25.0</th><th>34.3</th><th>21.0</th><th>28.7</th><th>22.7</th></lod<>	85.7	41.7	49.3	23.0	25.0	34.3	21.0	28.7	22.7
anti-AR CALUX	1.6	1.9	1.6	2.2	<lod< th=""><th>0.9</th><th><lod< th=""><th>0.8</th><th><lod< th=""><th><lod< th=""><th>0.8</th></lod<></th></lod<></th></lod<></th></lod<>	0.9	<lod< th=""><th>0.8</th><th><lod< th=""><th><lod< th=""><th>0.8</th></lod<></th></lod<></th></lod<>	0.8	<lod< th=""><th><lod< th=""><th>0.8</th></lod<></th></lod<>	<lod< th=""><th>0.8</th></lod<>	0.8
PPARγ CALUX	<lod< th=""><th><lod< th=""><th><lod< th=""><th>63.0</th><th><lod< th=""><th>82.0</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>63.0</th><th><lod< th=""><th>82.0</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>63.0</th><th><lod< th=""><th>82.0</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	63.0	<lod< th=""><th>82.0</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	82.0	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
GR CALUX	0.4	<lod< th=""><th><lod< th=""><th>1.2</th><th><lod< th=""><th><lod< th=""><th>0.6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.2</th><th><lod< th=""><th><lod< th=""><th>0.6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	1.2	<lod< th=""><th><lod< th=""><th>0.6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0.6	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>

Mixture toxicity - exceedances of effect-based trigger values (EBTs) by a battery of in vitro SOLUTIONS/NORMAN bioassays

Prioritisation of wide-scope target and suspect screening has indicated that these novel monitoring techniques are vastly superior compared to traditional monitoring of a few legacy substances and provide both 'early-warning' and 'safety net' signals needed for holistic chemicals management.

The traditional monitoring applied in compliance with the current environmental legislation does not sufficiently protect the Danube ecosystem.

The effect-based monitoring is a MUST!