Norman Cross-working Group activity

Passive sampling

- Work conducted in 2020
- Planned activities for 2021

Cécile Miège and Ian Allan

This presentation

- Update of the work on the ILS
- Presentation of the «PS and biota for chemical monitoring of the WFD»
- JDS4
- Ideas for the JPAs for 2021 (JPA proposals to be prepared)

ILS PS-NTS: Status

	Date	Event
	Sept 2018	Kick-off/planning meeting in Lyon (Fr)
	Jan-May 2019	Final plans, site selection, development of protocols for sampler exposure, equipment preparation, registration of participants
	May-July 2019	Sampler exposures, sample preparation and dispatch to participating laboratories
	December 2019	Tentative deadline for all results submitted by 28 laboratories
	Jan-Nov 2020	Preliminary data assessment – drafting of data manuscript (lead: Saer ; more info in the NTS session)
N/V+	•	Forfatternavn 30.11.2020 3

Sampling and analysis designed to address:

- 1. Which chemicals/features are (i) present and removed from source water (river) and (ii) present in drinking water and generated during drinking water treatment?
- 2. What is the most effective extended suspect screening workflow for the detection of these chemicals in the passive sampling extracts?

3. Can passive sampling combined with NTS be an effective strategy for the water monitoring?

Forfatternavr

30.11.2020

Dynamic passive sampling - Principle

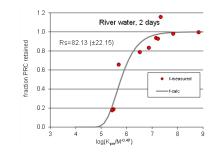
-"Standard" passive sampling (e.g. With POCIS)

-Deployment with a mooring for periods of 2-3 weeks

-Commonly observed sampling rates for 1 device, R_s of approximately 0.3 L d⁻¹.

-Total volume of water extracted of 2-5 L

-Dynamic passive sampling*
 -Deployment for periods of days
 -Sampling rates for 1 disk, R_s of approximately 1-2 L d⁻¹.
 -Total volume of water extracted of 4-8 L


*Vrana, B., Smedes, F., Allan, I., Rusina, T., Okonski, K., Hilscherová, K., Novák, J., Tarábek, P. and Slobodník, J., 2018. Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River. *Science of The Total Environment*, 636, pp.1597-1607.

Sampling rates and volumes of water extracted

The sampling rates of the horizon HLB samplers R_{s.HLB} were estimated from sampling rates derived for SR samplers ($R_{s,SR}$), using d the surface areas of both samplers $A_{HI,R}$, A_{SR} :

$$R_{S,HLB} = \frac{A_{HLB}}{A_{SR}} R_{S,SR}$$

Vial number	Matrix type	Sampler Exposure time	Silicone sampling rate R _{S,SR} (L/d)	Estimated sampled water volume ^a	Equiv volume of water extracted of the samples (L)
Vial 1	River water	2 days	82	190 L	4.8
Vial 2	River water	4 days	74	346 L	8.7
Vial 3	Drinking water	2 days	71	160 L	4.0
Vial 4	Drinking water	4 days	65	295 L	7.4

30.11.2020

Passive sampling in Joint Danube Survey

Analytical and bioanalytical assessments of organic micropollutants in the Danube River using a combination of passive sampling, bioassays and nontarget screening: Demonstrating the NORMAN methodology for monitoring purposes in Joint Danube Survey JDS4

Branislav Vrana, Masaryk university, Centre RECETOX, Czech Republic

Objectives

Provision of a methodology and setting up baseline for representative monitoring of trace organic pollutants in large water bodies, enabling setting up a long-term trend monitoring of relevant substances

Identification of toxicity drivers in complex pollutant mixtures present in Danube water

Identification of bioaccumulative substances based on comparison of chemical mixtures present in passive sampler extracts from water and biota

Passive sampling in Joint Danube Survey JDS4

10 supersites in the Danube

Deployment: May-August 2019

Stationary deployment

Hydrophobic compounds: silicone sampler

Hydrophilic compounds: AttractSPE™ disks HLB

9 out of 10 sites sampled sucessfully

Passive sampler analysis

> Analysis of selected target priority substances; river basin specific pollutants and a wide-scope target analysis

- > Analysis of extracts by a battery of bioassays
- > NTS of extracts from passive samplers:

➢ GC-EI-HRMS and GC-APCI-QTOF-MS (hydrophobic compounds) and LC-HRMS (polar compounds) and fish from supersites

LC-HR-MS and GC-HR-MS of extracts and related fish samples & support at sampling

Expected outcomes

Monitoring data (absolute or relative concentrations),

Identification of relevant substances and toxicity profiling in the Danube river, including reporting

report on the role of passive sampling in the WFDcompliant investigative monitoring and the identification of river basin specific pollutants.

Special thanks to:

Roman Prokeš,CZ Jakub Vinkler, CZ Manfred Sengl, DE Elena Elexová, SK Tóth György István, HU Igor Stanković, HR Momir Paunović, SRB Mina Asenova, BG Florentina Soare, RO Stefan Miron, RO and many more...

JPA for 2020

NORMAN cross working group activity on passive sampling

Workshop on Passive sampling in support of chemical monitoring in biota for the Water Framework Directive

3rd December 2020 9-13h

Teams event, ~115 registered participants

Background for this workshop

2013 - NORMAN expert group meeting at Masaryk University in Brno, Czech Republic

→ investigated how Environmental Quality Standards (EQS) values relate to results obtained from passive sampling and vice versa

2014 - NORMAN/AQUAREF "Workshop on Passive Sampling techniques for monitoring of contaminants in the aquatic environment" at Irstea, Lyon, France

 \rightarrow Defined a roadmap of further actions to be fostered by NORMAN

- → Recommendations and concrete actions proposed to enable the future use of passive sampling for regulatory monitoring of contaminants
- 2016 NORMAN satellite workshop of the IPSW conference (Prague, Czech Republic)
 → A common data repository for passive sampling and its combination with biota monitoring

PS-Biota studies (from 2019)

		Programme		Type of biota	Type of passive sampler	P
Country	Title and acronym	Start date	End date			
Norway	MILKYS	2012	2 2016	cod and mussel	silicone rubber	Ν
Norway	Tilførselsprogrammet	2009	2012	cod	silicone rubber	Т
Norway		201	5 2016	mussel	silicone rubber	
Czech Republi	GACR fish; Czech Science Foundat	i 201	5 2015	grass carp, common carp,	silicone rubber	1
Slovakia	GACR fish; Czech Science Foundat	i 201	7 2017	asp, perch, european chu	silicone rubber	
Czech Republi	GACR fish; Czech Science Foundat	i 2010	5 2017	European chub, common	i silicone rubber	1
Finland	ChemAct	2008	3 2012	Mussels, benthic inverteb	PE, Silicone rubber	
Finland	ChemAct	2008	3 2012	Fish, whole food web	PE	
Finland	UuPri	201	7 2017	Mussel	silicone rubber	
Finland	LapinKaiku	2018	3 2018	Aquatic moss	silicone rubber	
Belgium	Evaluation of passive sampling me	201	7 2021	European chub, gudgeon,	silicone rubber	Ε
Belgium	Evaluation of passive sampling me	201	7 2021	European chub, gudgeon,	POCIS	E
France	RSP Biote	2018	3 2020	barble, Chub, bream	DGT, DGT-PFOS. SR	R

30.11.2020

Programme for the workshop

9.00 Introduction

9.10 Stefano Polesello (IRSA, IT)

Biomonitoring and WFD: vision and remaining challenges

9.35 Olivier Perceval (OFB/Fr)

WFD and biota monitoring – A French perspective

9.45 Karin Deutsch (Ministry of Life/AT)

WFD and biota monitoring – An Austrian perspective

9.55 Georgia Buchmeier (Bavarian Environment Agency/GE)

WFD and biota monitoring – A German perspective

10.05 Catherine Munschy (Ifremer, FR)

Coastal monitoring with biota

10.15 Discussion

Break

VIVA

10.45 Foppe Smedes (RECETOX/Cz)

PS in support of fish monitoring – A new approach

11.10 Branislav Vrana (RECETOX/Cz)

Application of the approach in case studies and in Danube survey

11.20 Cecile Miege (INRAE/Fr)

Application of the approach to in case studies in France

```
11.30 Ian Allan (NIVA/No)
```

PS and biota monitoring – Data from Norway

11.40 Discussion

13.00 Workshop end

JPA ideas for 2021

- Workshop on PS in support of chemical monitoring of the WFD for substances with EQS_{water}
- Dive into the «PS-NTS ILS data with a focus on PS aspects
- Interlaboratory study on PS for polar substances
- Developing links with other NORMAN groups on EDA, microplastics and water re-use.

	Workshop on PS for substances with EQS _{water} in support of chemical monitoring for the WFD		
Type of activity	Workshop		
Leader	INRAE		
Background/justifica	-Need for inclusion of PS in monitoring programmes		
tion	-Timely		
	-End of selected large scale national projects (e.g. AQUAREF study in		
	France)		
Participants	NIVA, RECETOX, +++		
Proposed in-kind	Time for preparation and presentations by participants		
contribution			
Contribution from	2000 euros for consulting services for preparation of online		
NORMAN	workshop		

19

Title	Dive into "PS-NTS" data with specific focus on PS
Type of activity	Online working meeting and final workshop
Leader	INRAE
Background/justifica	-Large interlaboratory study on PS-NTS (2019-2020)
	-Data manuscript but a wealth of information related to the use of PS in NTS: How does PS over increasing exposure time contributes to identify substances removed or generated during drinking water treatment?
Participants	NIVA, RECETOX, +++
Proposed in-kind contribution	Time related to data interpretation
Contribution from NORMAN	???

Title	Interlaboratory study on passive sampling for polar substances
Type of activity	ILS
Leader	RECETOX, NIVA, INRAE
Background/justifica	-Last NORMAN funded ILS was conducted in 2013
tion	-Much development of passive sampling devices for polar
	substances and/or PFAS in the period 2013-2020
	-Build upon study in Brno, organisers to assemble samplers from
	participants all deployed at a specific site
	-Alternative, deployment of samplers at multiple sites to investigate
	ability to rank sites according to contamination levels
Participants	+++
Proposed in-kind	Preparation and running of the ILS
contribution	
Contribution from	10 000 euros
NORMAN	
N/V+	Forfatternavn 30.11.2020 21

Title	Networking and developing links to other NORMAN groups
Type of activity	Workshop, meetings
Leader	INRAE, NIVA
Background/justifica	-Investigate opportunities to combine PS with EDA in a research and
tion	regulatory context – advantages and challenges
	-Evaluate the possibility to use PS in water re-use context
	-Initiate discussions on PS and chemical additives within a
	microplastic context
Participants	+++
Proposed in-kind	Time for meetings and workshop
contribution	
Contribution from	???
NORMAN	

