Eawag: Swiss Federal Institute of Aquatic Science and Technology

Progress made and challenges in abatement technologies for municipal wastewater: the Swiss case

Christa S. McArdell

christa.mcardell@eawag.ch

with input Juliane Hollender

Norman / AQUAlity workshop, 6 March 2019, Paris, France

The new Swiss Water Protection Act in force since January 2016

- ✓ Abatement of micropollutants by 80% in selected WWTPs
- ✓ Implementation until 2040
- Driving forces
- Effects of micropollutants
- Suitable technologies
- Evaluation of performance
- Example ozonation at WWTP Neugut

Eggen et al. ES&T (2014) 48, 7683

Locations with exceedance of chronic quality standard Protection of drinking water resources (precautionary principal) Responsibility as «up-stream» country

- > The Swiss government decided: There is need for action
- 10 year process
- Pilot tests (project Micropoll) => basis for decision finding
- Collaboration with authorities and all relevant stakeholders
- Two public consultations
- «willingness to pay»:
- Pragmatic approach for evaluation: Abatement of 12 indicator substances

Cost-Benefit Analysis of the Swiss National Policy on Reducing Micropollutants in Treated Wastewater

Logar et al. ES&T (2014) 48, 12500-12508

Effects of urban micropollutants

★Substances for which chronic quality standards are exceeded

Bourgin et al. (2018) Wat. Res. 129, 486-498 Otto et al. Fachbericht Eawag (2014)

Chemical exposure in river water determined with online-SPE-LC-HRMS/MS

- Online-SPE-LC-HRMS/MS analysis
- 257 of 389 substances detected

Risk assessment: msPAF – multi-substance Potentially Affected Fraction of species

Only a few substances drive overall risk

Munz et al. 2017, Wat Res 110, 366-377 Slide courtesy Juliane Hollender

Risk drivers

Economic technological options

Ozonation

- Has relatively small footprint
- biologically active post-treatment (sand filter) is
 needed to reduce potentially toxic biodegradable
 reaction products
- Ozone consumption increases with increasing DOC and nitrite content
- Not suitable for every wastewater (test) Schindler Wildhaber et al. Wat Res. 2015, 75, 324

powdered activated carbon

recirculation of used PAC into biology

- Larger footprint
- Co-occurring DOC removal
- recycling PAC to biology reduces PAC consumption → capacity in biology needed
- PAC is incinerated with excess sludge
- new projects to produce regional biochar

VSA platform «Process Engineering Micropollutants» (www.micropoll.ch): knowledge sharing, acting as an interface between research and practice

Ozonation	ferrate
PAK	combination
GAK	Running
	 Under construction Study

Running as of March 2019:

Country	PAC	GAC	Ozone
Switzerland	4	1	4
Germany	14	4	4
France	-	-	4
Total	18	5	12

Requirements for new technologies

- Other technologies are possible
- Abatement of MPs by 80%
- No formation of problematic transformation products

Plattform "Verfahrenstechnik Mikroverunreinigungen" <u>www.micropoll.ch</u>

V S A

Anforderungen an neue Verfahren zur Spurenstoffelimination auf ARA in der Schweiz

- Minimizing additional discharge of solids (e.g. PAC)
- Large-scale experiments at differing operating conditions at a municipal WWTP
- Pilot scale experiments must be accompanied scientifically, stakeholders are actively involved, authorities and VSA are informed
- Transparent and comprehensible documentation
- Economics competitive to ozonation / AC

Economics

Rizzo et al. 2019,

STOTEN 655, 986-1008

Specific capital annual costs of advanced treatment

0,40 Spec. capit. annual costs [€/m³ treated wastewater] 0,35 0,30 0,25 0,20 0,15 0,10 ٠ 0,05 0,00 10.000.000 1.000.000 1.000 100.000 10.000 Connected population equivalent PAC GAC X New construction Ozone $y = 5,68x^{-0,38}$ $y = 6,23x^{-0,36}$ y = 143,23x-0,67 - Filtration available $R^2 = 0.51$ $R^2 = 0.80$ $R^2 = 0.91$

Antakyali D. 2017, kompetenzzentrum-mikroschadstoffe.NRW

Evaluating effectiveness of measures: selection of 12 indicator substances

Substance	class	Elimination with ozone / PAC	
Amisulpride	antipsychotic	Very good (>80%)	
Carbamazepine	antiepileptic	Very good	
Citalopram	antidepressant	Very good	
Clarithromycin	macrolide antibacterial	Very good	
Diclofenac	antiinflammatory / antirheumatic	Very good	Selection of
Hydrochlorothiazide	diuretic	Very good	four substances
Metoprolol	beta blocking agent	Very good	
Venlafaxine	antidepressant	Very good	
Benzotriazole	corrosion inhibitor	good (50-80%)	
Methylbenzotriazole	corrosion inhibitor	good	Selection of
Candesartan	antihypertensive agent, angiotensin II antagonist	good	two substances
Irbesartan	dito	good/ Very good	
		Cötz et el AOUA	RCAS (2015) 2 21 10

Götz et al., AQUA&GAS (2015), 2, 34-40

12 substances are **representative** for organic micropollutants Not selected for their effect (but, e.g. hormones are also abated)

- Only parents compounds (no transformation products)
- Can be easily and routinely measured in one analytical method (at cantonal or private labs)
- Occurring in bigger WWTPs at measureable concentration (influent concentration 10x LOQ in effluent)
- Degraded to less than 50% in biological treatment
- Similar abatement in advanced treatment (not favoring ozone or AC)
- Continuous discharge into WWTP
- > Mainly pharmaceuticals fulfill these criteria

Elimination of indicator substances

Ozonation at WWTP Neugut (first Swiss plant upgraded)

Overall Elimination at WWTP Neugut

Bourgin et al. (2018) Wat. Res. 129, 486-498

Concentration (µg/L)

Effluent concentrations at WWTP Neugut

Well performing biological treatment

Advantage nitrification:

- Reduction of DOC (less ozone / carbon needed)
- no nitrite (less ozone needed)
- only minor MP elimination (30-50%), but can be crucial

Falas et al. 2016, Wat. Res. 95, 240-249

Catchment Grand River, Canada, before and after upgrade with nitrification

Intersex incidence in male rainbow fish:

WWTP effluent characteristics:

Hicks et al. 2017, ES&T 51, 1811–1819