NORMAN Interlaboratory study (ILS) on passive sampling of emerging pollutants

STUDY RESULTS: challenging substances – Steroid hormones, PFOS/PFOA, Bisphenol A, Triclosan

Chemical Monitoring On Site (CM Onsite) organised by NORMAN Association and JRC in support of CIS WFD

Cécile Miège

Irstea, freshwater systems, ecology and pollution research unit, Lyon, France

Final Workshop on Norman ILS on passive sampling, 29-30 Oct., Ispra, Italy
Design of the exercise

Steroid hormones: 15 laboratories
17-alpha-Estradiol (17 \(\alpha \)E2)
17-alpha-Ethinylestradiol (17 \(\alpha \)EE2)
17-beta-Estradiol (17 \(\beta \)E2)
Estriol (E3)
Estrone (E1)
➔ Cemagref (Irstea) as ref. lab.

Triclosan (TCL): 8 laboratories
➔ UK Environment Agency as ref. lab.

Bisphenol A (BPA): 11 laboratories
➔ UK Environment Agency as ref. lab.

Fluorinated surfactants : 9 laboratories
PFOA, PFOS
➔ European Commission
DG Joint Research Centre as ref. lab.

➔ Campaigns on site : in June-July 2011
Unstability of steroids in water (4°C, white glass containers)

- αEE2 not degraded after 72h
- αE2 et βE2 degraded → E1
Preliminary study on stability for steroids (2)

- Spiking level ~10 ng/L
- Matrix: wastewater treatment plant effluent
- Storage in amber glass containers at -20°C during 7 days
- Defrosting at 4°C

Stability of steroids when waters are frozen and stored in amber glass containers and defrosted at 4°C
WATER SAMPLING PROTOCOL - field samples
Steroid hormones, PFOS/PFOA, Bishpenol A, Triclosan

FIELD SAMPLES

Automatic sampler (on site):
Collect 100 mL/h x 24h = 2400 ml/day

Transport to RECETOX:
Transfer 24h composite water sample every day from 12x1 L autosampler cylinders to a clean 2.5 L amber glass bottle, homogenise and transport on ice to the laboratory

Filter through Whatman GF/F

min. 2000 mL/day

- **570 mL/day**
 - Triclosan AND Bishpenol A
 - bottle A
 - 2x1 L; glass bottle
 - Store @ 4°C
 - 2000 mL / 7-day composite sample Send weekly to UK EA
 - bottle B
 - 2x1 L; glass bottle
 - Store @ 4°C
 - 2000 mL / 7-day composite sample Send weekly to UK EA

- **570 mL/day**
 - PFOA/PFOS
 - bottle C
 - 2L; Nalgene
 - Store @ 4°C
 - 2000 mL / 7-day composite sample Send weekly to DG JRC IES
 - bottle D
 - 2L; Nalgene
 - Store @ 4°C
 - 2000 mL / 7-day composite BACKUP, store at RECETOX

- **340 mL/day**
 - Steroid hormones
 - bottle E
 - 2x1 L; glass bottle
 - Store @ -20°C
 - 1200 mL / 7-day composite sample Send weekly to Cemagref Lyon store at RECETOX
 - bottle F
 - 2x1 L; glass bottle
 - Store @ -20°C
 - 1200 mL / 7-day composite BACKUP store at RECETOX
WATER SAMPLING PROTOCOL- blank samples
Steroid hormones, PFOS/PFOA, Bishpenol A, Triclosan

BLANK SAMPLES
1000 mL Milliq water/day
Filter through Whatman GF/F

285 ml/day
- bottle Blank A
 2L; glass bottle
 Store @ 4°C
 2000 ml / 7-day composite BLANK
 triclosan and bisphenol A
 Send weekly to UK EA

285 ml/day
- bottle Blank B
 2L; Nalgene
 Store @ 4°C
 2000 ml / 7-day composite BLANK
 PFOS/PFOA
 Send weekly to DG JRC IES

170 ml/day
- bottle Blank C
 1L; glass bottle
 Store @ -20°C
 1200 ml / 7-day composite BLANK
 Steroids
 Send weekly to Cemagref Lyon
Self assessed level of expertise in analysis of target compound groups in passive samplers

<table>
<thead>
<tr>
<th>Laboratory Steroid hormones</th>
<th>Fluorinated surfactants</th>
<th>Triclosan</th>
<th>Bisphenol A</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>50</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A- expert
B-some experience
C-limited experience
Categories of participant samplers

<table>
<thead>
<tr>
<th>Sampler</th>
<th>Abbreviation</th>
<th>Steroid hormones</th>
<th>Fluorinated surfactants</th>
<th>Triclosan</th>
<th>Bisphenol A</th>
</tr>
</thead>
<tbody>
<tr>
<td>POCIS pharmaceutical</td>
<td>POCIS</td>
<td>26, 39, 49</td>
<td>29, 37, 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empore Disk</td>
<td>ED</td>
<td>19</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>POCIS, pesticide</td>
<td>POCIP</td>
<td>33</td>
<td>23, 39, 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone rubber material</td>
<td>SR</td>
<td>43</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Speedisks</td>
<td>SPEED</td>
<td>43</td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Modified POCIS</td>
<td>POCIM</td>
<td>36</td>
<td>19, 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard SPMD (length 1m)</td>
<td>SPMD</td>
<td>23</td>
<td>23, 23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Polyoxymethylene</td>
<td>POM</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Low density polyethylene</td>
<td>LDPE</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results for steroid hormones
Example: 17 beta Estradiol

QC: the median and geometric mean of participant within the uncertainty range stated by the central laboratory

- **Provided sampler, ng/cm²**
 - **Median**: 0.035
 - **s**: 0.099
 - **Geomean**: 0.060
 - **n**: 6
 - **Outliers**: 0

- **Participant sampler, Cw in ng/L**
 - **Median**: 1.33
 - **s**: 5.4
 - **Geomean**: 0.66
 - **n**: 4
 - **Outliers**: 0

- **Spot samples**
 - **Period 1**: 0.54
 - **Period 2**: 0.58

- **LOD**

Laboratory number

- **Set value**
- **Expanded Uncertainty (k = 2)**
- **2 SD of log₂ transformed data**
- **Outliers**

Example: 17 beta Estradiol

- **QC**: the median and geometric mean of participant within the uncertainty range stated by the central laboratory

- **Only 4 lab for participant sampler (in ng/L)**

- **TWAC < LOQ**

Laboratory number

- **Standard solution, µg/mL**
- **Median**: 0.0204
- **s**: 0.011
- **Geomean**: 0.022
- **n**: 13
- **Outliers**: 2
- **s excl. outl**: 0.0050
- **Refvalue**: 0.02
- **Exp. Unc**: 0.00

Log₂ scale

- **Set value expanded Uncertainty (k = 2)**
- **2 SD of log₂ transformed data**
- **Outliers**

Water sample mean
Example 17 beta Estradiol – Samplers comparison

Uptake (ng/cm²)

- **Provided sampler**
 - 2
 - 1
 - 0.5
 - 0.25
 - 0.13
 - 0.063
 - 0.031
 - 0.016
 - 0.0078
 - 0.0039
 - 0.002

- **Participant sampler**
 - 2
 - 1
 - 0.5
 - 0.25
 - 0.13
 - 0.063
 - 0.031
 - 0.016
 - 0.0078
 - 0.0039
 - 0.002

Cw (ng/L)

- **Provided sampler**
 - 64
 - 32
 - 16
 - 8
 - 4
 - 2
 - 1
 - 0.5
 - 0.25
 - 0.13
 - 0.063
 - 0.031
 - 0.016
 - 0.0078
 - 0.0039
 - 0.002

- **Participant sampler**
 - 64
 - 32
 - 16
 - 8
 - 4
 - 2
 - 1
 - 0.5
 - 0.25
 - 0.13
 - 0.063
 - 0.031
 - 0.016
 - 0.0078
 - 0.0039
 - 0.002

LOD

Composite water sample (2 per exposure)
Standard solution

- 4 replicates of sample injection to the instrumental system
- Injections spread over the analysis sequences (at least 4 other sample injections are made between individual injections of this solution)

- Reference concentration of steroids within the range comprised by the participant results (median + 2 standard deviations excluding outliers)
- Except for 17-αEE2, the median and geometric mean of participant results were within the uncertainty range stated by the central laboratory.
- Outlier results were reported by 3 laboratories (20, 23 and 36).
Provided sampler (= POCIS pharm without PRC)

Median value expanded uncertainty \((k = 2) \)

Analysis of triplicates of POCIS exposed for 14 d

Conc. in field blank close to LOD \(< 10\% \text{ Conc. in exposed samplers} \)

Because of very low water concentration (see table right), < 6 lab. were able to measure steroids (except estrone) above their LOQs in provided samplers

<table>
<thead>
<tr>
<th>Sample/Compound</th>
<th>(bottle C1)</th>
<th>(bottle C2)</th>
<th>(bottle E1)</th>
<th>(bottle E2)</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-alpha-Estradiol</td>
<td><1.30</td>
<td><0.90</td>
<td><1.05</td>
<td><0.90</td>
<td>ng/L</td>
</tr>
<tr>
<td>17-alpha-Ethinylestradiol</td>
<td><17.25</td>
<td><14.2</td>
<td><10.00</td>
<td><11.98</td>
<td>ng/L</td>
</tr>
<tr>
<td>17-beta-Estradiol</td>
<td>0.70</td>
<td><0.45</td>
<td>0.50</td>
<td>0.58</td>
<td>ng/L</td>
</tr>
<tr>
<td>Estriol</td>
<td><2.90</td>
<td><2.75</td>
<td><7.45</td>
<td><8.33</td>
<td>ng/L</td>
</tr>
<tr>
<td>Estrone</td>
<td><1.10</td>
<td><0.85</td>
<td><0.85</td>
<td><0.73</td>
<td>ng/L</td>
</tr>
</tbody>
</table>

Water concentrations
Participant sampler, Cw

Median value expanded uncertainty ($k = 2$)

Weekly spot samples

LOD in spot samples

ng/L

Median value expanded uncertainty ($k = 2$)

0 outliers

ng/L

Weekly spot samples

LOD in spot samples

n=2 n=3 n=4 n=1 n=8

17αE2 17αEE2 17βE2 E3 E1
Ratio of water concentrations provided / participant sampler

\[\frac{C_{w(NPS)}}{C_{w(PPS)}} \]

NPS – provided passive sampler; PPS – participant passive sampler
Variability of reported results (excluding outliers)

<table>
<thead>
<tr>
<th>Steroid hormones</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within laboratory</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>Variability:</td>
<td></td>
</tr>
<tr>
<td>Matrix analysed:</td>
<td></td>
</tr>
<tr>
<td>Standard solution</td>
<td>11%</td>
</tr>
<tr>
<td>NPS amount</td>
<td>53%</td>
</tr>
<tr>
<td>NPS water concentration</td>
<td>48%</td>
</tr>
<tr>
<td>Provided sampler</td>
<td></td>
</tr>
<tr>
<td>PPS amount</td>
<td>3%</td>
</tr>
<tr>
<td>PPS water concentration</td>
<td>3%</td>
</tr>
<tr>
<td>Participant sampler</td>
<td></td>
</tr>
</tbody>
</table>

NPS – provided passive sampler; PPS – participant passive sampler

- High variabilities because concentrations in passive samplers close to LOQs
- Analysis of steroids in complex environmental matrixes is challenging
Variability of reported results

<table>
<thead>
<tr>
<th>NPS – provided passive sampler; PPS – participant passive sampler</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Standard solution</th>
<th>NPS amount</th>
<th>NPS water concentration</th>
<th>PPS amount</th>
<th>PPS water concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-alpha-Estradiol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-alpha-Ethinylestradiol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-beta-Estradiol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estriol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within laboratory Mean vs. Between laboratory
Conclusions for steroids

- Standard solution:
 - Acceptable variability with exception of 17-α-EE2 (between lab. variability of 53%)
 - Instrumental methods was not expected to cause excessive variability in reported data

- Analysis of steroids in passive samplers = a challenge
 - High within laboratory variability explained by concentrations close to LOQs + matrix effect + non-homogeneity of sampling

- A direct comparison of passive sampling data with spot sampling not possible since spot sample data below LOQ. However, no contradiction between passive sampling and spot sampling results

- Passive sampling method allows measurement of concentrations lower than spot sampling but the interlaboratory precision is not sufficient
Results for PFOS and PFOA
Example:

PFOS

- **QC**: the median and geometric mean of participant not within the uncertainty range stated by the central laboratory (not for PFOA)

* Only 2 lab for participant sampler (in ng/L) passive sampler calibration is scarce (no calibration data available)
Example PFOS - Samplers comparison

Uptake (ng/cm²)

Cw (ng/L)

Water sample mean > 7 ng/L

LOD
Sample/Compound	**Bottle C1 (20.6.-26.6.)**	**Bottle C2 (27.6.-4.7.)**	**units**
PFOA | 27.5 | 36.0 | ng/L
PFOS | 5.7 | 8.5 | ng/L
Variability of reported results

<table>
<thead>
<tr>
<th>Fluorinated surfactants</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within laboratory</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>Variability: Matrix analysed:</td>
<td></td>
</tr>
<tr>
<td>Standard solution</td>
<td>2%</td>
</tr>
<tr>
<td>NPS amount</td>
<td>15%</td>
</tr>
<tr>
<td>NPS water concentration</td>
<td>5%</td>
</tr>
<tr>
<td>PPS amount</td>
<td>18%</td>
</tr>
<tr>
<td>PPS water concentration</td>
<td>20%</td>
</tr>
</tbody>
</table>

NPS – provided passive sampler; PPS – participant passive sampler

- An excellent within laboratory variability of analysis of individual compounds in standard solution (2%)

- In provided samplers for sampler uptake: a good within laboratory variability (15 to 25%) and acceptable between variability (<51%)

- In all samplers: no possible to evaluate a between laboratory variability for water concentration (n=2)
Variability of reported results

PFOA

- Within laboratory Mean
- Between laboratory

PFOS

- Within laboratory
- Between laboratory
Results for BPA and TCL
Example:

BPA

* QC : the median and geometric mean of participant > reference value (idem for TCL)

- Participant sampler (in ng/L) :
 - Only 3 lab, because calibration is scarce (no calibration data available)
 - median value < LOD < water sample mean

![Chart showing standard solution, provided sampler, and participant sampler results](chart.png)

Spot samples
- Period 1: 198
- Period 2: 171
- LOD: 75

Participant Sampler
- Cw in ng/L
 - Median: 4.8
 - s: 10.9
 - GeomMean: 5.5
 - n: 3
 - Outliers: 0

Provided Sampler
- Uptake ng/cm2
 - Median: 6.4
 - s: 7.7
 - GeomMean: 3.9
 - n: 6
 - Outliers: 0

Standard solution, µg/mL
- Median: 0.258
- s: 0.29
- Geomean: 0.29
- n: 6
- Outliers: 0

Composite water sample
- (2 per exposure)
- mean value

> provided sampler, ng/cm2

> participant sampler, Cw in ng/L

> composite water sample

> water sample mean

> outlier colour

> sampler type

> repeatability (± 2 × SD)

> median

> - 2 × stand. dev. of log₂ transf. data

> + expanded uncertainty with k = 2

> reference value

> - 2 × stand. dev. of log₂ transf. data

> - expanded uncertainty with k = 2

> provided sampler, uptake ng/cm²
Example BPA - Samplers comparison

Composite water sample
(2 per exposure)

Uptake (ng/cm²)

Cw (ng/L)

Provided sampler
Participant sampler

Example BPA - Samplers comparison

Composite water sample
(2 per exposure)

Uptake (ng/cm²)

Cw (ng/L)

Provided sampler
Participant sampler

LOD

POM

ED
Standard solution, µg/mL

Provided sampler, ng/cm²

Participant sampler, Cw in ng/L

Water composite samples

<table>
<thead>
<tr>
<th>Sample/Compound</th>
<th>Bottle A1 (20.6.-26.6.)</th>
<th>Bottle A2 (27.6.-4.7.)</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclosan</td>
<td><50</td>
<td><50</td>
<td>ng/L</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>206</td>
<td>122</td>
<td>ng/L</td>
</tr>
</tbody>
</table>
Variability of reported results

<table>
<thead>
<tr>
<th>Compound:</th>
<th>Bisphenol A</th>
<th>Triclosan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variability:</td>
<td>Coefficient of variation (%)</td>
<td>Coefficient of variation (%)</td>
</tr>
<tr>
<td>Matrix analysed:</td>
<td>Within laboratory</td>
<td>Between laboratory</td>
</tr>
<tr>
<td>Mean</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Standard solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provided sampler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPS amount</td>
<td>8%</td>
<td>1%</td>
</tr>
<tr>
<td>NPS water concentration</td>
<td>14%</td>
<td>5%</td>
</tr>
<tr>
<td>Participant sampler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS amount</td>
<td>31%</td>
<td>10%</td>
</tr>
<tr>
<td>PPS water concentration</td>
<td>33%</td>
<td>6%</td>
</tr>
</tbody>
</table>

NPS – provided passive sampler; PPS – participant passive sampler

- A good within laboratory variability in standard solution (mean CV at 8 and 3% for BPA and TCL)
- In provided samplers for sampler uptake: a good within laboratory variability (mean CV at 19 and 15% for BPA and TCL) and relatively high between variability (>98%)
- In all samplers: no reasonable to evaluate a between laboratory variability for water concentration (n= 3 for BPA, 2 pour TCL)
Variability of reported results

Bisphenol A

Triclosan
Conclusions for PFOS/PFOA, BPA and TCL

- Few results on TWA concentration in water - passive sampler calibration is scarce (no calibration data available)

- In provided samplers for sampler uptake (ng/cm2):
 - For perfluorinated compounds - a good within laboratory variability (15 to 25%) and acceptable between variability (<51%)
 - For BPA and TCL - a good within laboratory variability (mean CV at 19 and 15% for BPA and TCL) and relatively high between variability (>98%)
Thank you for your attention
Example: Estrone

Standard Solution, µg/mL

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.0217</td>
</tr>
<tr>
<td>s</td>
<td>0.021</td>
</tr>
<tr>
<td>Geomean</td>
<td>0.022</td>
</tr>
<tr>
<td>n</td>
<td>13</td>
</tr>
<tr>
<td>Outliers</td>
<td>2</td>
</tr>
<tr>
<td>s excl. outl</td>
<td>0.0054</td>
</tr>
<tr>
<td>Refvalue</td>
<td>0.02</td>
</tr>
<tr>
<td>Exp. Unc</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Provided Sampler uptake, ng/cm²

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.053</td>
</tr>
<tr>
<td>s</td>
<td>0.084</td>
</tr>
<tr>
<td>Geomean</td>
<td>0.063</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
</tr>
<tr>
<td>Outliers</td>
<td>1</td>
</tr>
<tr>
<td>s excl. outl</td>
<td>0.068</td>
</tr>
</tbody>
</table>

Participant Sampler, Cw in ng/L

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>5.0</td>
</tr>
<tr>
<td>s</td>
<td>9.8</td>
</tr>
<tr>
<td>GeomMean</td>
<td>2.3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Outliers</td>
<td>0</td>
</tr>
</tbody>
</table>

Spot samples:
- Period 1
- Period 2
- LOD

Composite water sample (2 per exposure)

Repeatability (± 2 × SD)

Mean value

Outlier colour

Provided sampler type

Reference value

Expanded uncertainty with k = 2

+ 2 × stand. dev. of log₂ transf. data

Median

- 2 × stand. dev. of log₂ transf. data

+ expanded uncertainty with k = 2

Median

- expanded uncertainty with k = 2

Estrone
Estrone - Samplers comparison

Uptake in ng/cm²

<table>
<thead>
<tr>
<th>SPEED</th>
<th>SR</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,031</td>
<td>0,063</td>
<td>0,13</td>
</tr>
<tr>
<td>0,25</td>
<td>0,50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED</th>
<th>SR</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,031</td>
<td>0,063</td>
<td>0,13</td>
</tr>
<tr>
<td>0,25</td>
<td>0,50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Cw in ng/L

<table>
<thead>
<tr>
<th>SPEED</th>
<th>SR</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,031</td>
<td>0,063</td>
<td>0,13</td>
</tr>
<tr>
<td>0,25</td>
<td>0,50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED</th>
<th>SR</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,031</td>
<td>0,063</td>
<td>0,13</td>
</tr>
<tr>
<td>0,25</td>
<td>0,50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Example:
17-alpha-Ethinylestradiol
17-alpha-Ethinylestradiol - samplers comparison

Uptake in ng/cm²

Cw in ng/L

- **Provided sampler**
- **Participant sampler**

- POM