

Network of reference laboratories and related organisations for monitoring and bio-monitoring of emerging environmental pollutants

# Databases and exchange of monitoring data - experiences from NORMAN

#### Jaroslav Slobodnik NORMAN Association www.norman-network.net



Environmental monitoring of biocides in Europe - from prioritisation to measurements, Berlin, 5-6 November 2012

# **NORMAN network – emerging substances**

- Former EU-funded project, established as a permanent network (NORMAN Association) since 2009
- >50 members from EU leading organisations (19 European countries and Canada)

#### **Mission:**

- Exchange information on emerging substances
- Improve data quality
- Promote synergies among research teams





# NORMAN activities to identify the relevant emerging pollutants

**Databases:** Monitoring Toxicity Properties data

Prioritisation

Target screening

Relevant pollutants Nontarget screening

NORMAN Validation protocol Measurement methods

Effect-based analysis

NORMAN Massbank – identification of unknowns

## **NORMAN Databases – EMPODAT monitoring data**

 Designed to store data from research projects and national and EU monitoring campaigns on emerging substances

#### Distribution of data by ecosystem/matrix

Distribution of surface water data



# NORMAN EMPODAT database – portal for data on emerging substances (2011)

#### Data upload per year



11.05.2000

73 🗏 🔂 Dibutul tin in

Ricts - River web

River Elbe, near Prossen

# Collected data

| Kow (Source: Exp. data EPI suite >> QSARs via read-across methods)                                                                     | 705/707 substances                                                                        | ~ 1100 tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Koc (Source: Decision tree model (Sabljic et al. 1995, Sabljic et al. 1996)                                                            | 707/707 substances                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W S (Exp. Data EPI suite >> read-across via<br>ACF (Kühne 2006)                                                                        | 707 / 707 substances                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fugacity models (Mackay et al. at 10°C,<br>Level III, emission to water)                                                               | 568 / 707 substances                                                                      | ~ 700 tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PNEC (P-PNEC)water/ sed / biota<br>(Exp. data + kNN read-across Schüürmann et al.<br>2011, EST DOI:10.1021/es200361r)                  | 693 / 707 substances                                                                      | Capital 2015 Mil. Aqui culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Monitoring data (EMPODAT database)                                                                                                     | 1 037 000 data for 359 substances<br>(NORMAN members)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit of Quantification (LOQ water/ sed / biota)                                                                                       | Available in the NORMAN DB +<br>literature search and expert labs for<br>> 300 substances | Name fatore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Classification PBT, vPvB, CMR, ED<br>Int. classification lists; DT50 (Kühne et al. 2007);<br>BCF (EUSES 1996, Dimitrov-Mekenyan (2002) | 702 /707 substances                                                                       | Add new entry or Edit the database<br>New Original Constants of the database<br>Provide Constants of the database<br>Original Constants of the d |
| *                                                                                                                                      | Empore y<br>Legy (1997)<br>#20                                                            | 2xxxxd)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Data entries per substance



Total number of data entries: 905285

Total number of substances: 354



#### Number of analysis per substance class



| Class (class I)                           | % of the total number<br>of NORMAN data |  |  |  |  |
|-------------------------------------------|-----------------------------------------|--|--|--|--|
| Pesticides                                | 50,3                                    |  |  |  |  |
| Industrial chemicals                      | 10,8                                    |  |  |  |  |
| Trace metals and their compounds          | 9,7                                     |  |  |  |  |
| Pharmaceuticals                           | 7,9                                     |  |  |  |  |
| Flame retardants                          | 4,1                                     |  |  |  |  |
| Other                                     | 3,9                                     |  |  |  |  |
| Plasticisers                              | 2,7                                     |  |  |  |  |
| Antifouling compounds                     | 2,3                                     |  |  |  |  |
| Fragrances                                | 2,2                                     |  |  |  |  |
| Personal care products                    | 1,3                                     |  |  |  |  |
| Gasoline additives                        | 1,3                                     |  |  |  |  |
| Biocides                                  | 0,9                                     |  |  |  |  |
| Disinfection by-products (drinking water) | 0,7                                     |  |  |  |  |

455748

**Biocides in the** NORMAN list of emerging substances (2011)

34 biocides on the NORMAN List

22 for which monitoring data are available

- 78 300 data >> 2005 8,5 % of the total (925 000)
- 97 200 data >> 2000 10,5 % of the total

3 for which monitoring data from  $\geq$  4 countries and potential risk is identified Terbuthylazine, Diazinon, Terbutryn

5 for which monitoring data is available from  $\geq$  4 countries Terbutylazine, Terbutryn, Triclosan, Carbendazim, Diazinon

17 for which further screening is essential

Chlorotoluron, N,N-Diethyltoluamide (DEET), Imidaclopride, Formaldehyde, Prometryn, Malathion, Propiconazole, Dichlorvos, Phoxime, Tolylfluanid, Chlorothalonil, Anthraquinone, Benzothiazole, Chlorpyriphos methyl, Dichlofluanid, Thiabendazole, Deltemethrin



NORMAN Association N° W604002510

## **Origin of data**



Not identified

Monitoring results

Research/technical studies

■ Surveys

# By QA/QC category

• 0.45% • 0.42% 0 • 2.15%



Adequately supported by qualityrelated information

Supported by limited qualityrelated information

Minimal quality related information

Not supported by quality-related information



RESEARCH COMMUNICATION

#### Triclosan—the forgotten priority substance?

Peter Carsten von der Ohe• Mechthild Schmitt-Jansen•Jaroslav Slobodnik• Werner Brack

Science of the Total Environment 409 (2011) 2064-2077



Contents lists available at ScienceDirect

Science of the Total Environment



journal homepage: www.elsevier.com/locate/scitotenv

A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive

Peter Carsten von der Ohe<sup>a,\*</sup>, Valeria Dulio<sup>b</sup>, Jaroslav Slobodnik<sup>c</sup>, Eric De Deckere<sup>d</sup>, Ralph Kühne<sup>e</sup>, Ralf-Uwe Ebert<sup>e</sup>, Antoni Ginebreda<sup>f</sup>, Ward De Cooman<sup>g</sup>, Gerrit Schüürmann<sup>e,h</sup>, Werner Brack<sup>a</sup>

Trends in Analytical Chemistry, Vol. 30, No. 8, 2011

Trends

## A harmonized European framework for method validation to support research on emerging pollutants

David Schwesig, Ulrich Borchers, Laure Chancerelle, Valeria Dulio, Ulla Eriksson, Marinella Farré, Anders Goksoyr, Marja Lamoree, Pim Leonards, Peter Lepom, Dean Leverett, Anne O'Neill, Rod Robinson, Katarina Silharova, Jaroslav Slobodnik, PeterTolgyessy, Renaud Tutundjian, Jan-Willem Wegener, David Westwood



# **Non-target screening**

- Samples of water/sediment/biota/soil/air screened with GC-MS and/or LC-accurate mass-MS
- Data stored in NORMAN MassBank
- Provisional identification of substances present in samples
- Derivation of provisional PNECs using QSAR
- Prioritisation based on occurrence and toxicity
- Top listed non-target substances target monitoring

NORMAN MassBank database http://massbank.normandata.eu/Massbank



### Non-target Screening

#### Example: Slovak Republic



## NORMAN MassBank – "let's share the knowns and focus on the unknowns"

- VISION =>> bringing together community of environmental chemists and set up of a common and open access mass spectral database for identification purposes.
- Upgrade of the former NORMAN EMPOMASS database =>> hosted and maintained by UFZ, Leipzig
- NORMAN joined MassBank consortium (existing global platform \*) in 2012
- Members of the NORMAN network committed to provide mass spectra to fill up the database
- Training workshop on the use of NORMAN MassBank 27 November 2012, Amsterdam

\*MassBank Horai et al., 2010; www.massbank.jp





## MassBank DB Search

## Quick Search

#### Example: atrazine

Home | Spectrum | Quick | Peak | Substructure | Identification | Browser | Batch | Browse | Index | MassBank ID:

Go

Search by Keyword

Search by Peak

| Beak Data                                                                                 | Instrument Type                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Peak Data<br>174.0542 999<br>216.1013 222<br>104.0006 152<br>132.032 147<br>96.0552 130   | EI EI-B<br>EI-EBEB<br>GC-EI-TOF                                                                                        |  |  |  |  |  |
| 146.0226 122<br>68.0237 113<br>79.0052 102<br>138.077 39                                  | <ul> <li>✓ ESI</li> <li>✓ ESI-IT-MS/MS</li> <li>✓ ESI-QQ</li> <li>✓ ESI-QqIT-MS/MS</li> <li>✓ ESI-QqQ-MS/MS</li> </ul> |  |  |  |  |  |
| * <i>m</i> /z and relative intensities(0-999), delimited by a space.<br>Example1 Example2 | MS Type                                                                                                                |  |  |  |  |  |
| Cutoff threshold of relative intensities 5                                                | All MS MS2 MS3 MS4                                                                                                     |  |  |  |  |  |
| Number of Results 20 -                                                                    | <ul><li>Ion Mode</li><li>Positive <ul><li>Negative <ul><li>Both</li></ul></li></ul></li></ul>                          |  |  |  |  |  |

Search

Non-target Screening



Tentatively Identified Predicted Conc.

MEC<sub>95</sub>

<u>MEC<sub>95</sub></u> P-PNEC Predicted Toxicity AF 1000 P-PNEC





#### Identification of river basin specific pollutants and derivation of environmental quality standards: A case study in the Slovak Republic<sup>☆</sup>

# Prioritisation based on nontarget screening: case study in the Slovak Republic

Jaroslav Slobodnik, Lea Mrafkova, Mario Carere, Fulvio Ferrara, Bruno Pennelli, Gerrit Schüürmann, Peter Carsten von der Ohe

Table 9: Results of prioritisation based on the GC-MS screening data and and (predicted) toxicity data.

| No. | CAS        | Name                                        | Max. conc. | MEC <sub>95</sub> <sup>a</sup> | AA-EQS <sup>b</sup> | Source EQS | Lowest PNEC | Ref. <sup>c</sup> | TL <sup>4</sup> | Freq. PNEC <sup>e</sup> | Exceed. PNEC <sup>f</sup> | Priority <sup>8</sup> |
|-----|------------|---------------------------------------------|------------|--------------------------------|---------------------|------------|-------------|-------------------|-----------------|-------------------------|---------------------------|-----------------------|
| 1   | 629-62-9   | Pentadecane                                 | 1.7        | 1.5                            |                     |            | 0.0015      | B                 | A               | 0.20                    | 1000                      | 1.20                  |
| 2   | 544-76-3   | Hexadecane                                  | 3.6        | 2.4                            |                     |            | 0.0015      | Р                 | F               | 0.17                    | 1600                      | 1.17                  |
| 3   | 95-16-9    | Benzothiazole                               | 30958      | 4459                           | 2                   | SK         | 2           | Е                 | D               | 0.12                    | 2230                      | 1.12                  |
| 4   | 57-10-3    | Hexadecanoic acid                           | 15         | 3.7                            |                     |            | 0.021       | B                 | F               | 0.53                    | 176                       | 1.03                  |
| 5   | 629-50-5   | Tridecane                                   | 8.0        | 4.3                            |                     |            | 0.023       | B                 | F               | 0.50                    | 187                       | 1.00                  |
| 6   | 84-74-2    | Di-n-butylphthalate (DBP)                   | 60         | 22                             | 10                  | SK         | 0.74        | Е                 | F               | 0.77                    | 30                        | 0.97                  |
| 7   | 117-81-7   | DEHP                                        | 272        | 46                             | 1.3                 | WFD        | 0.96        | В                 | D               | 0.63                    | 48                        | 0.83                  |
| 8   | 629-59-4   | Tetradecane                                 | 4.3        | 2.2                            |                     |            | 0.0095      | B                 | Р               | 0.25                    | 232                       | 0.75                  |
| 9   | 112-40-3   | Dodecane                                    | 6.8        | 5.6                            |                     |            | 0.009       | Р                 | D               | 0.21                    | 622                       | 0.71                  |
| 10  | 1002-84-2  | Pentadecanoic acid                          | 9.0        | 7.5                            |                     |            | 0.04        | Р                 | A               | 0.12                    | 188                       | 0.62                  |
| 11  | 544-63-8   | Tetradecanoic acid                          | 6.8        | 1.9                            |                     |            | 0.05        | р                 | А               | 0.36                    | 38                        | 0.56                  |
| 12  | 4130-42-1  | Phenol, 2,6-bis(1,1-dimethylethyl)-4-ethyl- | 10.0       | 2.6                            |                     |            | 0.092       | B                 | D               | 0.36                    | 28                        | 0.56                  |
| 13  | 85-68-7    | Benzylbutylphthalate (BBP)                  | 6.4        | 2.7                            |                     |            | 0.27        | E                 | А               | 0.22                    | 10                        | 0.42                  |
| 14  | 143-07-7   | Dodecanoic acid                             | 7.2        | 3                              |                     |            | 0.08        | р                 | F               | 0.20                    | 31                        | 0.40                  |
| 15  | 84-69-5    | Diisobutyl phthalate                        | 14.0       | 3.6                            |                     |            | 0.9         | р                 | F               | 0.26                    | 4                         | 0.36                  |
| 16  | 57-11-4    | Octadecanoic acid                           | 2.5        | 0.76                           |                     |            | 0.013       | B                 | F               | 0.15                    | 58                        | 0.35                  |
| 17  | 92-52-4    | Biphenyl                                    | 3.7        | 1.7                            | 1                   | SK         | 0.36        | Е                 | D               | 0.22                    | 5                         | 0.32                  |
| 18  | 2091-29-4  | 9-hexadecenoic acid                         | 7.4        | 1.8                            |                     |            | 0.032       | B                 | Р               | 0.12                    | 56                        | 0.32                  |
| 19  | 120-72-9   | 1H-indole                                   | 84         | 34                             |                     |            | 1           | Е                 | D               | 0.08                    | 34                        | 0.28                  |
| 20  | 128-37-0   | Methyl-2,6-di-tert butylphenol (BHT)        | 10         | 2.6                            | 1.4                 | SK         | 1.4         | E                 | D               | 0.15                    | 1.86                      | 0.25                  |
| 21  | 615-22-5   | 2-(methylthio)-benzothiazole                | 14.0       | 3.8                            |                     |            | 0.31        | р                 | D               | 0.05                    | 12                        | 0.25                  |
| 22  | 1620-98-0  | Phenol, 2,6-bis(1,1-dimethylethyl)-4-ethyl- | 9.3        | 5.4                            |                     |            | 0.59        | B                 | D               | 0.08                    | 9                         | 0.18                  |
| 23  | 334-48-5   | Decanoic acid                               | 9.8        | 0.86                           |                     |            | 0.26        | р                 | А               | 0.07                    | 3                         | 0.17                  |
| 24  | 17851-53-5 | Butyl isobutylphthalate                     | 9.0        | 6.8                            |                     |            | 1.2         | B                 | D               | 0.04                    | 6                         | 0.14                  |
| 25  | 80-05-7    | Bisphenol-A                                 | 208        | 8                              | 10                  | SK         | 4.7         | E                 | F               | 0.02                    | 2                         | 0.12                  |
| 26  | 91-20-3    | Naphthalene                                 | 982        | 49                             | 2.4                 | WFD        | 6.1         | E                 | F               | 0.02                    | 8                         | 0.12                  |

241 compounds evaluated in terms of aquatic exposure and potential ecological effects, **Derivation of a Provisional Predicted No Effect Concentration: P-PNEC using QSAR** 



#### **Effect-directed analysis** (-> field-based approaches)

Predicted effects based on target monitoring are often different from measured effects

# ⇒WG on Effect-Directed Analysis (EDA) ⇒EDA-EMERGE project (ITN Marie Curie)

- Effect monitoring at site level
- No *a priori* knowledge on or selection of compounds required
- Applicable to any matrix (water, sediments, biota, ...)



SPIN - Substances in Preparations In the Nordic countries - a database that contains "nonconfidential" information on substances from the Product Registers of Norway, Sweden, Finland and Denmark

- The database contains volumes in use for each substance in the four countries also divided into which industrial branch (NACE) and which product type (UCN).
- The database also has a toolbox called SPIN Exposure Toolbox. The tool is called Use Index. The tool makes it possible to search for a general indicative exposure of human beings and environment from different chemical uses and a tool indicating widespread use. It is based on the extensive information stored in the Nordic product registers.



NORMAN Position Paper Collection, exchange and interpretation of data on emerging substances

#### VISION

- NORMAN should become the primary data source and global one-stop-shop for all issues regarding emerging substances contributing to the creation of the early-warning system for emerging pollutants and subsequent policy actions
- Data collection
- Data quality
- Establishment of a regular and automated data collection scheme
- The use of the data in support of European environmental policies and data collection activities
- **Presentation of the data to the public**

• Possible contribution to the architecture of the European Integrated Platform for for for the control of the

# Conclusions

The need to look beyond the traditional target pollutants is now generally recognised as a priority issue in all policy areas

- It is not possible to develop the necessary knowledge and methodologies solely at the national scale
  - Need for:
    - Commonly accepted methodology for **prioritisation** of relevant emerging substances and follow -up actions
    - Harmonisation of data collection formats
    - Continuous improvement of analytical expertise and data quality
    - Non-target screening and site-specific effect-based approaches to identify toxicants responsible for the observed effects
    - Inclusion of use data
    - Formulation of common views of the scientific community on research needs and **priorities for future legislation**
    - INTERNATIONAL COLLABORATION



# NORMAN – an open access platform where all knowledge on emerging substances can meet

# **INTERESTED TO COLLABORATE?**

## www.norman-network.net





EUR 24613 EN - 201



