

Interactive Demonstration

NORMAN-MassBank MetFusion

O-O-O

Emma Schymanski (Eawag) Tobias Schulze (UFZ) Michael Gerlich (IPB) emma.schymanski@eawag.ch tobias.schulze@ufz.de michael.gerlich@ipb-halle.de

Contents of Demonstration

- o NORMAN MassBank
 - $_{\circ}~$ Record Structure and the Record Index
 - Quick Search
 - Peak Search
 - Spectrum Search
 - Substructure Search
 - Administration of NORMAN MassBank
- MetFusion: Compound Database meets Spectral Database!
 - Michael Gerlich

Mass Spectral Database Searching

Some Definitions

- Compound Database (e.g. ChemSpider, PubChem):
 - A collection of structures, basic properties and associated information¹
 - Generally, no spectral data but >25,000,000 structures
- Mass Spectral Databases (or Libraries)
 - A collection of structures, their mass spectra and associated information
 - $_{\odot}\,$ NIST and Wiley Mass Spectral Libraries for GC-EI-MS
 - NIST11: >200,000 spectra; Wiley 9th: >660,000 spectra²
 - MS/MS databases are growing; none are yet "established"
 - MassBank: 31,140 spectra (mixed origin);
 - METLIN: 52,904 HR-ESI-MS/MS Agilent TOF-MS
 - NIST MS/MS: ~95,000 LR-MS/MS spectra of ~5,000 compounds
 - Keep an eye on mzCloud.org (Robert Mistrik, HighChem)

Using NORMAN MassBank

What do you really want to achieve?

- Flexible exchange of data within NORMAN
 - $_{\circ}~$ Upload of data from different instruments, different resolutions, \ldots
 - Reduce standard purchase via sharing of data
 - Extension to tentative / unknown spectra
- Purpose of a Mass Spectral Search
 - I have a compound of interest
 - o Are there any spectra? What do they look like?
 - I want to identify an unknown
 - Features of MassBank that may be useful
 - Using MetFusion for identification
 - I want to perform routine confirmation and quantification of targets
 - MassBank is not the best stand-alone solution for you (yet?!)
 - Talk to vendors to value-add instrument software with MassBank

MassBank: www.massbank.jp

Horai et al. 2010: DOI 10.1002/jms.1777

eawag aquatic research 8000

MassBank

NORMAN MassBank

http://massbank.normandata.eu/MassBank/

eawag aquatic research 0000

NORMAN MassBank

http://massbank.normandata.eu/MassBank/

eawag

Searching MassBank

What do you want to achieve?

- $\,\circ\,$ MassBank is a mixed database
 - $_{\circ}~$ Be careful to pick and mix your settings
 - $_{\odot}\,$ Adjust the thresholds to the data you have
 - $_{\circ}$...but also to the data in MassBank
 - $_{\circ}~$ Tolerance is in Da (i.e. one mass unit)
- Quality of spectra is quite mixed
 - $\circ \ \ldots$ as is the information provided in them

More details in the next slides!

Instrume	nt Type	
EI	 EI-B EI-EBEB GC-EI-MS GC-EI-TOF 	-
I ESI	 ✓ CE-ESI-TOF ✓ ESI-IT-MS/MS ✓ ESI-ITFT ✓ ESI-QQ ✓ ESI-QqIT-MS/MS ✓ ESI-QqQ-MS/MS ✓ FSI-QqTOF-MS/MS 	-

onization I	Mode	
Positive	Negative	Both

MassBank Record Format

eawag aguatic research 8000

CH\$NAME: Atrazine

MassBank Record Format

Compound Information

```
CH$NAME: Atrazine

CH$NAME: 6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine

CH$NAME: 6-chloranyl-N4-ethyl-N2-propan-2-yl-1,3,5-triazine-2,4-diamine

CH$COMPOUND_CLASS: N/A; Environmental Standard

CH$FORMULA: C8H14C11N5

CH$FORMULA: C8H14C11N5

CH$EXACT_MASS: 215.0932

CH$SMILES: c1(nc(nc(n1)C1)NCC)NC(C)C

CH$IUPAC: InchI=1S/C8H14C1N5/c1-4-10-7-12-6(9)13-8(14-7)11-5(2)3/h5H,4H2,:

CH$LINK: CAS <u>1912-24-9</u>

CH$LINK: CAS <u>1912-24-9</u>

CH$LINK: CHEBI <u>15930</u>

CH$LINK: KEGG <u>C06551</u>

CH$LINK: FUBCHEM CID:<u>2256</u>

CH$LINK: INCHIKEY MXWJVTOOROXGIU-UHFFFAOYSA-N

CH$LINK: CHEMSPIDER 10774593
```


MassBank Record Format

Instrument and Measurement Information

```
AC$INSTRUMENT: LTQ Orbitrap XL Thermo Scientific
AC$INSTRUMENT_TYPE: LC-ESI-ITFT
AC$MASS_SPECTROMETRY: MS_TYPE MS2
AC$MASS_SPECTROMETRY: IONIZATION ESI
AC$MASS_SPECTROMETRY: ION_MODE POSITIVE
AC$MASS_SPECTROMETRY: FRAGMENTATION_MODE HCD
AC$MASS_SPECTROMETRY: COLLISION_ENERGY 45 % (nominal)
AC$MASS_SPECTROMETRY: RESOLUTION 7500
AC$CHROMATOGRAPHY: COLUMN_NAME XBridge C18 3.5um, 2.1x50mm, Waters
AC$CHROMATOGRAPHY: FLOW_GRADIENT 90/10 at 0 min, 50/50 at 4 min, 5/95 at 1
AC$CHROMATOGRAPHY: FLOW_GRADIENT 90/10 at 0 min, 50/50 at 4 min, 5/95 at 1
AC$CHROMATOGRAPHY: RETENTION_TIME 8.3 min
AC$CHROMATOGRAPHY: SOLVENT A water with 0.1% formic acid
AC$CHROMATOGRAPHY: SOLVENT B methanol with 0.1% formic acid
```

```
MS$FOCUSED_ION: BASE_PEAK 216.1012
MS$FOCUSED_ION: PRECURSOR_M/Z 216.101
MS$FOCUSED_ION: PRECURSOR_TYPE [M+H]+
MS$DATA_PROCESSING: DEPROFILE Spline
MS$DATA_PROCESSING: RECALIBRATE loess on assigned fragments and MS1
MS$DATA_PROCESSING: WHOLE RMassBank
```


MassBank Record Format - Peaks

```
PK$ANNOTATION: m/z num {formula mass error(ppm)}
  68.0243 1 C2H2N3+ 68.0243 0.24
  71.0603 1 C3H7N2+ 71.0604 -0.35
  79.0058 1 CH4C1N2+ 79.0058 0.35
  96.0557 1 C4H6N3+ 96.0556 0.48
  104.001 1 C2H3C1N3+ 104.001 0.28
  132.0324 1 C4H7C1N3+ 132.0323 0.37
  138.0779 1 C5H8N5+ 138.0774 3.1
  138.1029 1 C7H12N3+ 138.1026 2.36
  146.0228 1 C3H5C1N5+ 146.0228 0.01
  146.0481 1 C5H9C1N3+ 146.048 0.95
  174.0544 1 C5H9C1N5+ 174.0541 1.9
  216.1014 1 C8H15C1N5+ 216.101 1.81
PK$NUM PEAK: 12
PK$PEAK: m/z int. rel.int.
  68.0243 949141.4 28
  71.0603 167093.1 5
  79.0058 1014555.8 30
  96.0557 1956578 59
  104.001 2256202.5 68
  132.0324 1805661.3 54
  138.0779 349329.9 10
  138.1029 280901.6 8
  146.0228 1313633.2 39
  146.0481 263134.4 7
  174.0544 32958196.3 999
  216.1014 29362258.7 890
17
```


CASMI2012 LC Challenge 13; APCI-ITFT; MS2; CE:45 CID;

ACCESSION: SMI00131 RECORD TITLE: CASMI2012 LC Challenge 13; APCI-ITFT; MS2; CE:45 CID; DATE: 2012.08.31 (Created 2012.08.31) AUTHORS: S. Neumann: IPB-Halle, Germany & E. Schymanski: Eawag, Switzerland COPYRIGHT: CASMI2012 MS\$FOCUSED ION: PRECURSOR M/Z N/A COMMENT: Unknown MS\$FOCUSED ION: PRECURSOR TYPE N/A COMMENT: http://casmi-contest.org/challenges-cat1-2.shtml CH\$NAME: CASMI2012 LC Challenge 13 PK\$NUM PEAK: 8 PK\$PEAK: m/z int. rel.int. CH\$COMPOUND CLASS: N/A; Unknown for CASMI 91.0541 2211410.3 873 CH\$FORMULA: N/A 125.0152 130666.3 52 CH\$EXACT MASS: N/A CH\$SMILES: N/A 167.0859 161086.1 64 CH\$IUPAC: N/A 185.0519 125915.7 50 201.0469 2531123 999 AC\$INSTRUMENT: LTQ-Orbitrap 215.0626 371698.1 147 AC\$INSTRUMENT TYPE: APCI-ITFT 219.0576 223408.9 88 AC\$ANALYTICAL CONDITION: MODE POSITIVE 233.0733 226928.3 90 AC\$MASS SPECTROMETRY: MS TYPE MS2 11 AC\$MASS SPECTROMETRY: ION MODE POSITIVE

eawag

MassBank Record Index

Have a look at what										
	Contributor	: <u>NOR</u>	RMAN EMP	<u>OMASS</u> (2,081)	<u>CASMI</u> (42)		Eaw	<u>vag</u> (944)	
is in MassBank:		<u>UFZ</u>	(2,509)			Keio Univ. (5	629)	<u>RIKI</u>	<u>EN</u> (1,721)	
		Wate	<u>ers</u> (2,993)			Kyoto Univ. (1	185)	<u>Chu</u>	<u>ibu Univ.</u> (2,62	8)
		Kazı	<u>usa</u> (273)			Nihon Univ. (7	75)	<u>Univ</u>	<u>/. Toyama</u> (25	3)
		Totto	ori Univ. (16)		IPB Halle (52	8)	Fuk	uyama Univ. (3	340)
		Meta	abolon (149)		<u>UOEH</u> (35)		NAI	<u>ST</u> (680)	
		Osal	ka MCHRI	(20)		Univ. Connect	<u>icut</u> (510)	<u>Osa</u>	<u>tka Univ.</u> (502))
Contributor:		<u>IMM</u> ,	, CAMS & F	<u>PUMC, China</u> ('	192)	PFOS resear	ch group (365)	<u>MPI</u>	for Chemical	Ecology (691)
	nstrument Type	: <u>GC-</u>	<u>EI-MS</u> (2,0	97)	LC-E	<u>ESI-QTOF</u> (2,7	750)	LC-	-APCI-ITFT (1	10)
		APC	<u>CI-ITFT</u> (1,2	06)	LC-E	<u>ESI-ITFT</u> (4,50	4)	ES	I <u>-ITFT</u> (1,310))
instrument Type:		LC-E	<u>ESI-IT</u> (515)	LC-E	<u>ESI-QQ</u> (5,038	3)	CE	- <u>ESI-TOF</u> (20))
(Orbitron - ITET)		GC-	<u>EI-TOF</u> (1,	016)	LC-E	<u>ESI-Q</u> (2,720)		<u>EI-</u>	EBEB (12)	
(Olbinap – 111 T)		FAB	<u>-EBEB</u> (17	73)	LC-E	<u>ESI-QIT</u> (378)		<u>El-</u>	<u>B</u> (91)	
		LC-E	LC-ESI-ITTOF (253)		<u>FAB-EB</u> (5)			ESI-IT-MS/MS (149)		49)
		<u>CI-B</u>	(1)		FAB	<u>-B</u> (26)		<u>FD</u>	<u>-B</u> (3)	
Compound		MAL	DI-TOF (1	7)	ESI-	QqTOF-MS/MS	<u>6</u> (510)	ES	I-QqIT-MS/MS	(140)
		ESI-	QqQ-MS/M	<u>s</u> (52)	<u>APP</u>	<u>PI-QqQ-MS</u> (2)		AP	PI-QqQ-MS/M	<u>S</u> (27)
Name: watch out		ESI-	QQ (78)		<u>LC-</u>	<u>APPI-QQ</u> (258)			
for numbers	onization Mode	: <u>Posi</u>	<u>itive</u> (16,19	17)			Negative (7,16	64)		
	Compound Name	: <u>A</u> (1,185)	<u>B</u> (1,122)	<u>C</u>	(1,372)	<u>D</u> (1,559)		<u>E</u> (426)	<u>F</u> (421)
		<u>G</u> (793)	<u>H</u> (429)	<u>I</u> (6	657)	<u>J</u> (2)		<u>K</u> (223)	<u>L</u> (1,254)
		<u>M</u> ((996)	<u>N</u> (1,005)	<u>0</u>	(388)	<u>P</u> (3,687)		<u>Q</u> (184)	<u>R</u> (287)
		<u>s</u> (9	941)	<u>T</u> (1,249)	U	(887)	<u>∨</u> (128)		<u>W</u> (3)	<u>X</u> (51)
		<u>Y</u> (5	5)	<u>Z</u> (72)	<u>1-9</u>	(3,844)	Others (191)			

MassBank Record Index

Scroll to see the contents (and see if your institute is in the top 10!)

MassBank Quick Search

Search compounds or peaks

Quick Search

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID: Go

Search by Keyword Search by Peak				
	Instrument Type			
Compound Name carbazole				
AND - Exact Mass Tolerance 0.3	I EI-EBEB I GC-EI-TOF			
AND - Formula				
(e.g. C6H7N5, C5H*N5, C5*) Reset	 ✓ ESI ✓ CE-ESI-TOF ✓ ESI-QqIT-MS/MS ✓ ESI-QqQ-MS/MS ✓ L C ESUT 			
Search	LC-ESI-ITFT			
	MS Type			
REMEMBER:	AII MS MS2 MS3 MS4			
Tolerance is in Da (one mass unit)	lon Mode			
	Positive Negative South			

Quick Search Results

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID:

Searc	h Para	meters :	
-------	--------	----------	--

Compound Name: carbazole

Instrument Type:	EI-B,	EI-EBEB,	GC-EI-TOF	
	CE-ESI-TOF	ESI-QqIT-MS/MS ,	ESI-QqQ-MS/MS	
	LC-ESI-IT,	LC-ESI-ITFT,	LC-ESI-ITTOF	
	LC-ESI-Q	LC-ESI-QIT	LC-ESI-QQ	
	LC-ESI-QTOF	CI-B	FAB-B	
	FAB-EB	FAB-EBEB	FD-B	
	FI-B	LC-APPI-QQ	MALDI-TOF	
	MALDI-TOFTOF			
MS Type:	All			
Ion Mode:	Both			Edit / Resubmit Query

Results: 34 Hit. (1 - 34 Displayed)

Open All Tree Multiple Display

Go

Spectrum Search

First Prev 1 Next Last (Total 1 Page)

Results End

Name	Formula / Structure	ExactMass ID
1,6-DINITROCARBAZOLE 1 spectrum	C12H7N3O4	257.04366
1-METHYLCARBAZOLE 1 spectrum	C13H11N	181.08915
2-METHYLCARBAZOLE	C13H11N	181.08915

MassBank Quick Search

Search compounds or peaks

Quick Search

Home | Spectrum | Quick | Peak | Substructure | Browser | Browse | Index | MassBank ID:

Go

Search by Keyword

Search by Peak

	Instrument Type
Peak Data 273.096 22 289.086 107 290.118 14 291.096 999 292.113 162 202.054 24	EI EI-B EI-EBEB GC-EI-MS GC-EI-TOF
293.054 34 579.169 37 580.179 15	ESI CE-ESI-TOF ESI-IT-MS/MS ESI-ITFT ESI-QQ
m/z and relative intensities(0-999), delimited by a space. Example1 Example2	 ✓ ESI-QqIT-MS/MS ✓ ESI-QqQ-MS/MS ✓ ESI-QaTOF-MS/MS
Cutoff threshold of relative intensities 5	Ionization Mode
Number of Results 20 -	Positive Negative Both

Search

MassBank Peak Search

Different to Quick Search \rightarrow Search by Peak!

Peak Search

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID: Go

Search

Go

Go

Peak Search Results (Peaks by m/z value)

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID:

MassBank Record: EA013612

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID:

Carbetamide; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+

ACCESSION: EA013612

RECORD_TITLE: Carbetamide; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+ DATE: 2012.08.02 AUTHORS: Stravs M, Schymanski E, Singer H, Department of Environmental Chemistry, Eawag

Aminocaproic acid	C6H13NO2	131.09463	
1 spectrum	· • • • • • • • • • • • • • • • • • • •		

MassBank Peak Search

By Peak Differences and m/z value

Peak Search

m/z Diff. Formula AND Instrument Type AND Instrument Type AND Instrument Type AND Instrument Type Instrument Type Instrument Type	earch of	 Peak Differences Molecular Formula 		
AND	m/z Diff	Formula	Instrument Type	
AND CE-ESI-TOF AND CE-ESI-TOF ESI-QqQ-MS/MS ESI-QqQ-MS/MS ELC-ESI-IT ELC-ESI-ITFT CLC-ESI-ITFTT CLC-ESI-ITF	AND -		 ✓ EI ✓ EI-B ✓ EI-EBEB ✓ GC-EI-TOF 	
AND Rel.Intensity 100 Tolerance 0.3 MS Type MS WMS2 WMS3 WMS4	AND AND AND		ESI CE-ESI-TOF ESI-QqIT-MS/MS ESI-QqQ-MS/MS LC-ESI-IT LC-ESI-ITFT	
Death	AND Rel.Intensity 100	Tolerance 0.3	MS Type ☑ All ☑ MS ☑ MS2 ☑ MS3 ☑ MS4	

Search

Ion Mode		
Positive	Negative	◎B

MassBank Spectrum Search

http://www.massbank.jp/sample/sample.txt

// Specification of file format

- // A line started by '//' is a comment line.
- // A peak is denoted by its m/z and intensity
 separated by one or more spaces.
- // Delimiter of spectra: one or more empty lines is

If you saved the data before the workshop, you can try

- // this example with "SpectrumSearch_EnvEgs.txt" ID column in the spectrum table for each spectrum.
- // A line started by 'Name:' specifies the value of the name column in the spectrum table for each spectrum.
- // A "Nist Format" file can be used without any modification.

MassBank Spectrum Search Results

Spectrum Search

Home | Spectrum | Quick | Peak | Substructure | Prediction | Browser | Batch | Browse | Index | MassBank ID:

F File Read sample file sample archive Browse... **Compare View** DB Package View File ID 72.0808 No. Name Query EA013612 US000001 1 EA008812 US000002 2 120.0444 Click on file name to search >> show all m/z EA013612 << < 72.0808 100 000 000 Package View display mode :
 selected
 related 120.0444

Search	Pa	rameter Sett	ting						ပိ	400 200
Result										0 200
Name		Score	Hit	ID	Ion	Contributor		Sec.		400
Carbetamide; LC-ESI-ITFT; MS2; 75%; R=	1	0.941860	12	EA013612	Ρ	Eawag	1 🔺			600
Carbetamide; LC-ESI-ITFT; MS2; 75%; R=	7	0.937374	12	EA013606	Ρ	Eawag	2 =			800
Carbetamide; LC-ESI-ITFT; MS2; 60%; R=	7	0.908825	11	EA013605	Ρ	Eawag	3			1000
Carbetamide; LC-ESI-ITFT; MS2; 60%; R=	1	0.903718	10	EA013611	Ρ	Eawag	4			0.0000
Carbetamide; LC-ESI-ITFT; MS2; 90%; R=	3	0.893760	12	EA013613	Р	Eawag	5			<< < >

Go

MassBank Spectrum Search Results

MassBank Spectrum Search with NIST Format

Example Spectrum "atrazine_msms_1563.msp"

	Browse_ File Read sample file sample archive										
DB	File					Compare View	Package View				
No. 1	Atrazine	Name		ID US000001		1000 Non 800	f	8.0	104.0		
						C 600 400 200 0 0.0000 C C C C C C C C C C C C C	43.0 50.0000 show all m/z Atra	79.0	96.0 100.0000	150.0000	_ <u>l</u>
<u> </u>	Dackago Viour	tienlau modo : (®) colocto	d O colate			1000 9.00 800		8.0	104.0 96 0 I		
		Search Parameter Setting						79.0 71.0		132.0	174.0
Resu Atrazin	It Name e; LC-ESI-ITFT; MS2; 90%; F	Score Hit R=30000; 0.877605 8	ID EA028813	Ion Contributor P Eawag	1-	200 400 600		71.0004 79.0058	3 96.0467	132.032346.0228	174.0541
Terbut Terbut Deisor Atrazin	ylazine; LC-ESI-ITFT; MS2; 9 ylazine; LC-ESI-ITFT; MS2; 9 propylatrazine; LC-ESI-QQ; M e; LC-ESI-ITFT; MS2; 90%; F	0%; R=3 0.876831 8 0%; R=7 0.869507 8 IS2; CE: 0.846463 11 R=7500; [0.841599 7	EA028413 EA028407 KO002380 EA028807	P Eawag 2 P Eawag 2 P Keio Univ. P Eawag 3	2 == 3 4 5	800 1000 0.0000 << < > >>	50.0000	8.0243 w hit m/z	100 .19(5)8011	150.0000	
Simazi Simazi Atrazin	ne; LC-ESI-ITFT; MS2; 90%; ne; LC-ESI-ITFT; MS2; 90%; e; LC-ESI-ITFT; MS2; 75%; F	R=7500; 0.830011 8 R=3000 0.824303 8 R=7500; [0.820171 8	EA026207 EA026213 EA028806	P Eawag P Eawag P Eawag	6 7 8	000 000 000 000 000 000 000 000 000 00	f	8.0243	104.0011		

MassBank Substructure Search

How many spectra in MassBank have the atrazine backbone?

bstructure		Instrume	ent Type	
Query1	Query2	I €I	 ✓ EI-B ✓ EI-EBEB ✓ GC-EI-TOF 	E
	AND Edit Molfile Clear	I ESI	CE-ESI-TOF ESI-QqIT-MS/MS ESI-QqQ-MS/MS LC-ESI-IT LC-ESI-ITFT	
		MS Type	2	
Comparison of pi-el	ectron for each atom		MS 🗹 MS2 🗹 MS3 🖾 MS4	
	number in query = number in target 👻			
* Double and triple	bound is translated to pi-electrons of the bonded atoms.	Ion Mode	9	
	Copyright © 2008 K. Tanaka and S. Kanaya, NAIST, Japa	n OPositiv	e ONegative ONegative	

Search

Query1

MassBank Substructure Search Results

Edit / Resubmit Query

Results : 59 Hit. (1 - 59 Displayed)

First Prev 1 Next Last (Total 1 Page)

Open All Tree Multiple Display

Spectrum Search

Results End

Name	Formula / Structure	ExactMass	ID
2,6-DICHLORO-4-(N-ETHYL)AMINO-1,3,5-TRIAZINE 1 spectrum	C5H6CI2N4	191.99695	
2-CHLORO-4,6-BIS(ETHYLAMINO)-1,3,5-TRIAZINE 1 spectrum	C7H12CIN5	201.07812	
6-CHLORO-N-ETHYL-N'-(1-METHYLETHYL)-1,3,5- TRIAZINE 1 spectrum	C8H14CIN5	215.09377	
Atrazine 15 spectra	C8H14Cl1N5	215.09320	
🗉 Deisopropylatrazine	C5H8CIN5	173.04682	

Internal MassBank Administration

Eawag Uchem-MassBank

Title
and the set of the second second
in the second se

MassBank Administration Tool

	-	-
Company lane inc. - Existing of Second 11	10	COL INC.
The second secon	078	HILKS TO HE UTST HE UTST HE UTST HE UTST HE UTST HE HE

A Quial Caaral

WEB-API WSDL

Internal MassBank Administration

MassBank Administration Tool

Main Menu Record Validator Validator Record Validator Record Registration Structure Registration File Upload Sql File Generator Version Information HOME MENU Instrument Editor Record List Structure List Validator Record List Generator Dababase Manager HOME

Record Validator									
Database :	····· ·	Record Version: 2 	\bigcirc 1 (old record version)						
Record Archive :				Browse_	Validation				
	* please speci	fy your [recdata.zip] or [*.msbk].							

Internal MassBank Administration

Database Manager

No.	DB Name		Short Label	Long Label			
2 🔹	UchemA		Eawag Uchem Adducts	Uchem EZ recor	ds of adduct spectra	3	
	URL Type		URL				
	internal external		http://uchem-massbank/Ma	ssBank/			
					Add	Edit	Delete

26 database (20 external database)

No.	DB Name	URL	Short Label	Long Label	Status	Details
0	MassBank	http://uchem-massbank/MassBank/	EQ Uchem Q Ex	Eawag Uchem- MassBank	ok	
1	UchemEZ	http://uchem-massbank/MassBank/	EA Uchem Orbi Test	Annotated Uchem Standard Spectra for Approval	ok	
2	UchemA	http://uchem-massbank/MassBank/	Eawag Uchem Adducts	Uchem EZ records of adduct spectra	ok	
3	EA	http://uchem-massbank/MassBank/	EA Uchem Orbi	Annotated Uchem Standard Spectra	ok	
4	Waters	http://www.massbank.jp/	Waters	Nihon Waters K.K.	ok	external database.
5	Kyoto	http://www.massbank.jp/	Kyoto Univ.	Kyoto University	ok	external database.
6	MassBank	http://157.110.6.77/MassBank/	Chubu Univ.	College. Life and Health Sci, Chubu U	ok	external database.

Thank you for listening

Any Questions?

O-O-O

Tobias Schulze (UFZ) Emma Schymanski (Eawag) Michael Gerlich (IPB) tobias.schulze@ufz.de emma.schymanski@eawag.ch michael.gerlich@ipb-halle.de