

NORMAN expert group meeting 3-4 July 2013, RECETOX, Masaryk University, Brno, Czech Republic

From passive sampling of sediment to lipid based concentrations

Kimmo Mäenpää (University of Eastern Finland)

Contributors: **Philipp Mayer** (Aarhus University, Denmark) **Annika Jahnke** (Stockholm University, Sweden) **Matti Leppänen** (Finnish Environmental Research Institute, Finland)

Objectives

•To calculate *equilibrium partitioning concentration* in lipids (C_{lipid partitioning}) based on equilibrium passive sampling

•Comparison to actual measured lipid normalized concentrations in biota ($C_{\text{lipid normalized}}$)

Hypotheses

 $C_{\text{free}} \leftrightarrow C_{\text{passive sampler}} \leftrightarrow C_{\text{biota lipids}}$

 $C_{\text{lipid partitioning}} \approx C_{\text{lipid normalized}}$

 $C_{\text{lipid partitioning}} < C_{\text{lipid normalized}}$

C_{lipid partitioning} > C_{lipid normalized}

Coated glass method

- Several coating thicknesses (from 1 µm to 16 µm)
- Equilibration in laboratory

Fig. Annika Jahnke

Different coating thicknesses \rightarrow Built-in QA/QC

Reichenberg et al. 2008 Chem. Central J., 2, 8.

Method sensitivity test

- Method quantification limits (MQLs): average blank + 10 times the standard deviation
- For 7 indicator PCBs:

	fg/L
GC/HRMS	16-800
GC/LRMS	168-2250

Jahnke et al. 2012 Environ Sci Technol 46

Calibration of coated glass analysis to C_{lipid partitioning}

 $C_{\text{lipid partitioning}} = C_{\text{passive sampler}} * K_{\text{lipid, passive sampler}}$

K_{lipid,PDMS} have been published for PCBs: *Jahnke et al. 2008. Chemosphere, 73, 1575–1581*

Head space sampling HS-SPME

- SPME fiber is equilibrated with the sediment
- Time series analysis to determine C_{fiber} at equilibrium

Calibration of HS-SPME

- External calibration standard in lipid (olive oil)
- Direct calculation of C_{lipid,partitioning}
- Benefits
 - Solvent free approach
 - Extraction and analysis can be manual or fully automated

Mäenpää et al. 2011 Environ Sci Technol 45

	Headspace-SPME	Coated glass
Working principle	Equilibration in head space and thermal desorption	PDMS coatings are equilibrated, extract injected on instrument
Calibration to C _{lipid,partitioning}	External calibration above spiked olive oil	$C_{\text{lipid,partitioning}} = C_{\text{PDMS}} * K_{\text{lipid,PDMS}}$
Special features	Applicable to dry samples	Combines thin coatings with high polymer mass
Confirmation of equilibrium	Time series measurements	Proportionality between mass of analyte and polymer (QA/QC)
Surface fouling	No physical contact with sample	Absence of artifacts indicated by the same proportionality

Mäenpää et al. 2011 Environ Sci Technol 45

C_{lipid,normalized} vs. C_{lipid,partitioning} Chironomidae larvae 20 А y = 0.416x• C_{lipid partitioning} av. 2.4 times $15 | R^2 = 0.89$ higher than $C_{lipid normalized}$ G_{ipid},normalized (µg g⁻¹) 10 5 _____149 ⊢⊖_-| 5 10

Mäenpää et al. 2011 Environ Sci Technol 45

From passive sampling of sediment to lipid based concentrations

15

Clipid,partitioning (µg g⁻¹) 20

A11 Seems as if Chironomidae are mosquito larvae, not worms? AnnikaJahnke, 11/05/2011

C_{lipid partitioning} vs. C_{lipid normalized} Native fish

• C_{lipid partitioning} av. 5.2 higher than C_{lipid normalized}

Jahnke et al. 2012 Environ Sci Technol 46

C_{lipid,normalized} vs. C_{lipid,partitioning} Native mussels

Mäenpää et al. Manuscript in preparation

Conclusions

- Calibration with K_{lipid,passive sampler}
 - post measurement calibration
 - requires analyte and media specific K values
- Direct calibration using partition standards in lipids
 - complete calibration within one step
 - easier to apply for new chemicals and media
- C_{passive sampler} can be converted to useful information to be used in environmental risk assessment
- C_{lipid partitioning}
 - predicts equilibrium level

