Advanced methodology for the prioritisation of contaminants and contaminant mixtures in the aquatic environment

(SOLUTIONS WP S2)

Michael Faust

F+B Environmental Consulting, Bremen, Germany

SOLUTIONS WP S2

Advanced methodology for the prioritization...

- Aims and Approach
- Wider Regulatory Context:

Legal Requirements for Mixture Risk Assessment in EU Legislation

• Key Terms / Concepts

Priority Mixtures Drivers of Mixture Toxicity Prioritisation

SOLUTIONS WP S2: Advanced methodology for the prioritisation of contaminants and contaminant mixtures in the aquatic environment:

An Integration and Coordination Activity

What we promised

 Proposal for an advanced methodology for the solution oriented prioritisation of contaminants and contaminant mixtures in the aquatic environment

The advanced methodology shall combine

- existing state-of-the-art approaches (⇒ NORMAN network),
- novel experimental tools (⇒ SOLUTIONS SP T),
- improved model-based approaches (⇒ SOLUTIONS SP M)

for the identification of

- emerging pollutants and hazardous transformation products,
- "drivers of mixture toxicity" and "priority mixtures"

(⇒ Communication from the Commission to The Council on "*The combination effects of chemicals*", COM(2012) 252 final)

The prioritisation procedure shall be

• tiered, resource-efficient and fit for regulatory purposes

Milestones

June 2014: 1st Workshop

Assessing the **state-of-the-art** and deriving recommendations for the development of advanced tools and methodologies in SOLUTIONS

December 2016: 2nd Workshop

Exploring options for integrating assessments of **mixture toxicity** and cumulative risks into prioritisation procedures

December 2017: 3rd Workshop

Discussing the **draft SOLUTIONS proposal** for an advanced prioritisation methodology

• March 2018: Final Product

Proposal for an advanced methodology for the prioritisation of (single) contaminants and **contaminant mixtures** under the WFD

Priority Mixtures

a concept under construction

... the Commission will:

. . .

(2) Develop, by June 2014, and taking account of the opinion of the Scientific Committees, technical guidelines to promote a consistent approach to the assessment of priority mixtures across the different pieces of EU legislation. ...

(Communication from the Commission to The Council on "The combination effects of chemicals", COM(2012) 252 final)

Compartmentalization of EU chemicals regulation

General Chemicals Control

- REACH Regulation (EC) No 1907/2006
- CLP Regulation (EC) 1272/2008

Special Uses of Chemicals

- Pesticides Authorisation Regulation (EC) 1107/2009
- Biocidal Products Regulation (EU) 528/2012
- Human Medicines Directive 2001/83/EC
- Veterinary Medicines Directive 2001/82/EC

Emission Control

- IPPC Directive 2008/1/EC (new codified version of 96/61/EC) IED – Directive 2010/75/EU
- EIA Directive 85/337/EEC

Quality of Environmental Media

- WFD Directive 2000/60/EC
- DWD Directive 98/83/EC
- Air Quality Directive 2088/50/EC

Food Law

- Food Additives Authorisation Directive 89/107/EEC
- Food Contact Materials Regulation (EC) No 1935/2004 (repealed and replaced 89/109/EEC)
- Feed Additives Authorisation Regulation (EC) No 1831/2003
- Feed Additives Assessment Directive 2001/79/EC
- Pesticide Residues Regulation (EC) No 396/2005

Non-Food Consumer Products

- General Product Safety Directive 2001/95/EC
- Cosmetics Directive 76/768/EEC

Occupational Health

• Workplace Health and Safety – Directive (89/391/EEC)

Legal Requirements for Mixture Risk Assessment

"... at present risk assessment on the combined effects of chemicals in a mixture is not commonly carried out, nor required by most EU regulations."

SCHER, SCENIHR, SCCS (EU Scientific Committees on Health and Environmental Risks, Emerging and Newly Identified Health Risks, and Consumer Safety) (2011) Toxicity and Assessment of Chemical Mixtures. European Commission, DG Health & Consumers, Brussels

Legal Requirements for Mixture Risk Assessment

Type of mixture	Is mixture toxicity taken into account in EU regulations?
Products	In general YES
Mixtures intentionally produced and placed on the EU market: UVCBs, MCS, preparations	
Process emissions	In some cases
Mixtures of chemicals emitted from point sources or diffusive sources as a result of economic processes: production, transportation, consumption, recycling, disposal	
Immissions / Multi-pathway exposure	In general NO
NOT intentionally produced complex mixtures of chemicals from numerous products and processes co-occurring in: environmental media, food, humans	

Legal Requirements for Mixture Risk Assessment

- **REACH:** PBT/vPvB assessment of MCS, UVCBs
- CLP: Assessment of intentionally prepared mixtures
- IPPC/IED: TEF approach for setting of ELVs for dioxins and furans from waste incineration plants
- PPP and Biocidal Products:
 Assessment of total product toxicity
- **Pesticide MRLs / PPP authorisation:**

Method development for mixture risk assessment of multiple residues in food

WFD: Methodologies for mixture risk assessment included in implementation guidelines

WFD – EQS for Mixtures

EQSs may be defined for grouped substances that exert a similar mode of action and may be expressed according to the concept of Toxic Equivalent [TEQ] concentrations in environmental samples.

European Communities (2011) Technical Guidance For Deriving Environmental Quality Standards, sections 2.7 and 7. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27.

- How should the term "similar mode of action" be interpreted exactly?
- How should groups of substances with a similar mode of action (MoA) been identified practically?
- How to deal with missing knowledge about MoAs?
- Is the concept Toxic Equivalent [TEQ] concentrations always appropriate?
- Are there alternative options for defining EQS for mixtures which are not sitespecific?

The "Drivers" Concept:

Examples for the identification of drivers of mixture toxicity under the assumption of concentration addition

23 pesticides at the levels found in surface waters:

Five compounds (21%) explain 80% of the combined algal toxicity

Data from Finizio et al. 2005, Agr Eco Env 111, 111-118; Junghans et al. 2006, Aquatic Toxicology 76, 93-110

15 anti-androgenic chemicals at estimated human exposure levels:

Five substances (33%) contribute 80% of the cumulative hazard index

Data from Kortenkamp and Faust 2010, Int J Androl 33, 463-474

Drivers

- Site specific
- Endpoint specific / Species specific

If model-based

- depending on the validity of the mixture toxicity model:
 - > Dose Addition may lead to a different ranking than Independent Action
 - Ranking may be wrong in case of synergistic or antagonistic interactions
 - Applicability of regulatory approaches derived from dose addition questionable

Regulatory Approaches Derived from Dose Addition

DA Dose (Concentration) Addition	E _{mix} ≤ x if	$\sum_{i=1}^{n} \frac{d_i}{EDx_i} \le 1$	$\frac{d_i}{EDx_i} = TU_i$ TU = Toxic Unit
PODI Point of Departure Index	No significant effect if	$\sum_{i=1}^{n} \frac{EL_i}{POD_i} \le 1$	EL = Exposure Level POD = LOEL, NOAEL, NOEC
HI Hazard Index	No reason for concern if	$\sum_{i=1}^{n} \frac{EL_i}{AL_i} \le 1$	EL = Exposure Level AL = Acceptable Level = ADI, DNEL,
PEC/PNEC Summation	No unacceptable risk if	$\sum_{i=1}^{n} \frac{PEC_i}{PNEC_i} \le 1$	PEC = Predicted Environ- mental Concentration PNEC = Predicted NEC

Consistent with DA under some simplifying assumptions

Typically more conservative than the scientific DA concept

Prioritisation

WFD requires the risk-based identification of

- "Priority substances" (⇒ "progressive reduction")
- "Priority hazardous substances"

(⇒ "cessation or phasing-out of discharges, emissions and losses")

Other prioritization aims

- ... for further action
- ... for risk assessment
- ... for ...

Other prioritization criteria

- ... hazard-based / effect-based
- ... exposure based

• • • • •

Thank you

