

Prioritisation of emerging contaminants by action category: the NORMAN approach

Valeria Dulio, INERIS <u>Valeria.dulio@ineris.fr</u> Peter von der Ohe, UBA <u>Peter.vonderohe@uba.de</u>

> NORMAN – SOLUTIONS Workshop Paris, 24-25 June 2014

maîtriser le nisque pour un développement durable

Regulated Pollutants under WFD

Protection objectives:

Aquatic ecosystems and human health via the aquatic environment

Experience / lessons learnt

- More than 50% of candidate substances were discarded
- Lack of data or insufficient data reliability (e.g. LOD >> PNEC, non-relevant matrix, etc.)
- Strong bias towards already regulated pollutants
- Ever growing list of chemical compounds frequently discussed as "emerging substances"
- Existing knowledge gaps do not allow an emerging substance to be correctly evaluated and may lead to it being discarded or overlooked
- Dir 2013/39/EU
 A EU Watch List will be implemented

NORMAN prioritisation scheme

NORMAN prioritisation scheme

- Designed for emerging substances
- Addresses knowledge gaps
- Identifies actions needed

How does it work?

Photo nº 897 : Le tri du courrier, à la grande Poste, rue Jeanne d'Arc, vers 1935.

Typical steps / components of prioritisation schemes

Choosing the relevant parameters for prioritisation

Filling in the database

Prioritisation algorithm

Adapted from V. Bonnomet, 2006

What to do when data is missing ?

Frequent conclusion of prioritisation exercises:

"...A large number of chemicals could not be prioritised due to a lack of either hazard or exposure data (or both)" (A. James. et al., 2009)

NORMAN approach: two main steps to tackle the problem of missing data

- Categorisation of substances into action categories based on *identified knowledge gaps*
- Prioritisation of substances within each category for further action

Categorisation of substances by identified knowledge gaps

Action categories

1. Control / mitigation measures

2. Screening campaigns

3. Rigorous hazard assessment

4. Improvement of analytical methods

5. Screening AND hazard assessment

6. Reduced monitoring efforts

The overall approach

 Categorisation – to allocate substances to <u>action categories</u>

2. Prioritisation – to define <u>priorities</u> within <u>each action category</u>

Risk indicators

Extent of Exceedance = MEC95 / Lowest PNEC

to address the intensity of impact

where:

- MEC95 (95th percentile of the max conc. at each site)
- Lowest PNEC
- Equivalent to PEC/PNEC!

Score for "Exceedance of environmental threshold" MEC95/lowest PNEC <1 = 0 $10 \ge MEC95/lowest PNEC \ge 1 = 0.1$ $100 \ge MEC95/lowest PNEC > 10 = 0.2$ $1000 \ge MEC95/lowest PNEC > 100 = 0.5$ MEC95/lowest PNEC > 1000 = 1

Risk indicators

Frequency of Exceedance = n / N

to address the spatial exposure aspects

where:

- n is the number of sites with MECsite > Lowest PNEC
- N is the total number of sites where the substance was measured

Score: value between 0 and 1

- Cat. 1, 3, 6: calculated using RECENT DATA
- Cat. 2, 4, 5: calculated using ALL DATA (all YEARS)

1. Control / mitigation measures

2. Screening campaigns

3. Rigorous hazard assessment

4. Improvement of analytical methods

5. Screening AND hazard assessment

6. Reduced monitoring efforts

Strong points

 We were able to select compounds with high scores due to hazardous properties, which were never monitored in FR (by the Water Agencies)

Examples:

- Triclocarbam, Triclosan,
- Parabens,
- Amiodarone, etc.

High occurrence frequencies observed during the screening study
→ will be included in the French Watch List for routine monitoring

Strong points

2. We were able to identify compounds already monitored in FR, which were measured with insufficient analytical performance

Much higher FQ observed during the screening study **will be included in the French Watch List for routine monitoring**

Weak points

- A robust exposure index for compounds not yet monitored is still missing (under development within NORMAN Prioritisation WG):
 - Inclusion of an exposure index based on production / usage (i.e. tonnages) and use pattern would allow improved prioritisation of compounds never monitored but expected to be present in the aquatic compartment
- More systematic consideration of:
 - metabolites and transformation products (associated to parent compounds on the list)
 - Form in the commercial product vs form present in the aquatic environment

Conclusions

The NORMAN Prioritisation framework:

- is applicable at different geographical scales (European, national, river basin level)
- provides a decision-support framework for updating lists of substances for which actions (reduction, monitoring, research) are to be undertaken as a matter of priority
- Improvement needed as regards:
 - Integration with chemical screening and bioassays-based tools in order to improve the list of candidate substances
 - Exposure index: introduction of a surrogate for missing monitoring data at EU level
 - Going beyond PEC/PNEC ratios for individual substances

Thank you for your attention

Leaders of the activity		
Valeria Dulio - INERIS, FR	Working Group leader	
Peter C. Von der Ohe, UBA, DE	Ecotoxicity sub-group leader	
Anja Derksen - AD eco advice, NL	Ecotoxicity sub-group leader	

Working Group experts

Marlene Ågerstrand	Stockholm University	SE
Laurence Amalric	BRGM	FR
Sandrine Andres	INERIS	FR
Ludek Blaha	Recetox	CZ
Werner Brack	UFZ	DE
Eva Brostrom	IVL	SE
Hélène Budzinski	University of Bordeaux	FR
Stellan Fisher	KEMI	SE
James Franklin	PlasticsEurope	EU
Armelle Hebert	VEOLIA Environnement	FR
Juliane Hollender	EAWAG	СН
Valérie Ingrand	VEOLIA Environnement	FR
Alice James-Casas	INERIS	FR
Martin Keller	BfG	DE
Vera Ocenaskova	T. G. Masaryk Water Research Inst.	CZ
Willie Peijnenburg	RIVM	NL
Zuzana Rabova	Recetox	CZ
Patrick Roose	МИММ	BE
Heinz Ruedel	Fraunhofer-IME	DE
Merijn Schriks	KWR	NL
Dieter Schudoma	UBA	DE
Jaroslav Slobodnik	EI	SK
Pierre-François Staub	ONEMA	FR

NORMAN Association

Network of reference laboratories and related organisations for monitoring and bio-monitoring of emerging environmental substances

Working Group on Prioritisation of Emerging Substances

NORMAN Prioritisation framework for emerging substances April 2013

Edited by Valeria Dulio & Peter C. von der Ohe

NORMAN Association N° W604002510 Rue Jacques Taffanel - Parc Technologique ALATA - 66550 VERNEUIL EN HALATTE (France) Internet : <u>www.norman.network.net</u>

Margin for improvement

- Candidate substances
 - We cannot prioritise the contaminants we are not looking for → need to integrate input from non-target screening, EDA, etc.
- Exposure index
 - Surrogate for missing monitoring data at EU level
 - Verify predicted exposure vs observed exposure
- Effect data
 - Improved criteria for the assessment of reliability and relevance of available tests
 - System for the derivation of provisional estimated PNEC (P-PNEC)
- Improved risk assessment
 - Going beyond PEC/PNEC ratios for individual substances, -
 - Identification of mixture drivers

Definition: Lowest PNEC (water) (ref. NORMAN Framework – Section 5.2.3.1)

* back-calculated « PNECwater sec pois » and « PNECwater, hh food » expressed in µg/L

Lowest effect threshold among EQS, PNEC_{NOEC/AF}, PNEC_{LC50/AF}, P-PNEC, PNEC_{biota sec pois}, PNEC_{biota hh food}

NORMAN Prioritisation criteria

Exposure relevance:

- N° of countries/sites with analyses > LOQ, frequency of quantification
- Use pattern

(Eco)toxicological relevance / Hazardous properties :

- PBT, vPvB citeria
- CMR properties
- Endocrine disruption potential
- Novel end points (behavioural effects)

Risk indicators:

- Frequency of exceedence of the PNEC (spatial distribution of impact)
- Extent of exceedance of the PNEC (intensity of impact)

PBT, vPvB criteria (based on Annex XIII REACh)

Persistence (P):

 T1/2: Kühne R, 2007. Estimation of compartmental half-lives of org. comp. - structural similarity versus EPI-Suite. QSAR Comb. Sci. 26: 542-549

Bioccumulation (B):

• BCF (B): Experimental data when available + UFZ Models

Toxicity (T):

- *T*+: Lowest PNEC < 0.01 μg/L
- *T*: Lowest PNEC < 0.1 μg/L

Existing PBT / vPvB classifications:

International PBT/POP Lists

Final PBT score: value between 0 and 1 [SUM (P + B + T) + PBT / vPvB] / 4

CMR effects (Human health toxicity)

- EU Regulation on Classification, Labelling and Packaging (CLP, EC 1272/2008)
- IARC Report on carcinogens

Final CMR score: value between 0 and 1 CMR, category 1 : 1 CMR, category 2 : 0.75 CMR, category 3 : 0.5 Under examination: 0.5 Not examined : 0.25 Examined and classified as not CMR: 0

Endocrine disruption effects

- Reviews on EDs by the EU Commission: (EU Commission 2007)
- "SIN List" (Substitute It Now!) (Chem. Sec SIN List 2.0)
- IEH Report on Chemicals purported to be endocrine disrupters(IEH Report, 2005)

Final ED score: value between 0 and 1 Proven ED effect : 1 Suspect ED effect: 0.5 Not examined: 0.25 Examined and classified as not ED: 0

No chance to identify priority compounds

Candidate substances

Main critical steps in prioritisation

Selection of the relevant parameters / indicators

- Exposure: concentration, emissions...
- Hazard: effects on the ecosystems (PNECs), ED, CMR, PBT, ...
- Physico-chem: solubility, biodegradability, Koc, Kow....

Filling of database

- data gathering
- quality check
- data aggregation

Prioritisation algorithm

- Choice of the algorithm
- Weight of the indicators