

Interlaboratory Study on Microplastics Analysis Development Exercise – DE 17

Round 2 (2020)

Final Report

van Mourik, L.M., Crum ,S.J.H., van Bavel, B., Martinez Frances, E., Leslie, H.A., de Boer, J., Cofino, W.P.

19 July 2021

Table of Contents

1	Introduction	.7
1.1	Confidentiality of results	. 8
2	Materials and methods	.8
2.1	Study design	. 8
2.2	Material preparation	. 8
2.2.1	Standard like test samples8	
2.2.2	Environmental samples9	
2.3	Analytes of interest	. 9
2.4	Methods applied	10
2.5	Data assessment	11
2.6	Z-score assessment	11
3	Results	13
3.1	Polymer type identification	13
3.2	Determination of plastic particles by numbers	14
3.2.1	Tablet (QMP002SW) 14	
3.2.2	Environmental samples (QMP003MS and QMP004BT) 16	
3.3	Determination of plastic particles by mass	19
3.4	Z-Scores	23
4	Discussion	24
5	Conclusions	25
6	References	27
Appendic	es 28	

This report can be cited as: van Mourik, L.M., Crum ,S.J.H., van Bavel, B., Martinez-Frances, E., Leslie, H.A., de Boer, J., Cofino, W.P. 2020 Interlaboratory Study on Microplastics Analysis, Quasimeme Development Exercise DE 17 Round 2, May 2021.

List of Figures

Figure 2-1 Summary of data on reported sample preparation and determination methods for microplastics determination in	n
tablets and/or environmental samples, with A) type of filter used, B), type of salt used, C) type of digestion used and D) type	of
determination method used. Detailed information per laboratory can be found in Appendix B	11
Figure 2-2 Illustration of z-score zones in relation to the assigned value	12
Figure 3-1 Flow diagram showing number of participants and number of submitted results	13
<i>Figure 3-2</i> Reported number of particles for the individual polymers spiked and the total number of polymers for the tablet	
sample QMP002SW	16
Figure 3-3 Figure CC Total number of particles reported for the polymers added, other polymers and for all polymers in the	
sediment sample QMP003MS	17
Figure 3-4 Figure EE Total number of particles reported for the polymers added, other polymers and for all polymers in the	
biota sample QMP004BT.	18
Figure 3-5 Reported mass for the added polymers and for the total mass of polymers in the tablet sample QMP002SW	20
Figure 3-6 Total mass reported for the polymers added, other polymers and for all polymers in the sediment sample	
QMP003MS	21
<i>Figure 3-7</i> Figure FF Total mass reported for the polymers added, other polymers and for all polymers in the biota sample	
QMP004BT	22

List of Tables

Table 3-1 Summary of degree to which the polymers added are identified1	4
Table 3-2 inter-comparability of reported number of particles (of added polymers and total) between laboratories	4
Table 3-3 Summary statistics for number of added polymers and total number of particles in sample QMP002SW	5
Table 3-4 Reported number of particles per tablet for the polymers added, total number of polymers and other polymers. 1	5
Table 3-5 Reported number of particles for the polymers added to the sediment sample (QMP003MS), total number of	
polymers and other polymers1	6
Table 3-6 Reported number of particles for the polymers added to the fish sample (QMP004BT), total number of polymers	
and other polymers	8
Table 3-7 Overview of the summary statistics of the reported weights of microplastics found in the spiked samples by	
pyrolysis GC-MS1	9
Table 3-8 Overview reported weights (µg/tablet) of microplastics found in the tablets (QMP001SW and QMP002SW)2	20
Table 3-9 Overview reported weights (mg/kg) of microplastics found in sediment (QMP003MS) and fish (QMP004BT)	
sample	!1
Table 3-10 Z-scores calculated for the polymers added and for the total of polymers added to the tablet sample QMP002S	N
	23

Abbreviations and acronyms

ATR	Attenuated total reflection
AV	Assigned value
DE	Development exercise
EPS	Expanded polystyrene
μFTIR	Microscopy and Fourier transform infrared spectroscopy
ILS	Interlaboratory study
LDPE	Low-density polyethylene
Max	Maximum
Min	Minimum
n	Number
NIAS	Non-intentionally added substances
NIVA	Norwegian Research Institute for Water Research
no.	Number
PC	Polycarbonate
PET	Polyethylene terephthalate
	Polyethylene Bolymethyl methodra data
PIVIIVIA	Polymetriyi methacrylate
PP	Polypropylene
PS	Polystyrene
PVC	Polyvinyl chloride
Pyr-GC-MS	Pyrolysis gas chromatography-mass spectrometry
QAQC	Quality assurance and quality control
RSD	Relative standard deviation
SD	Standard deviation
TED-GC-MS	Thermal extraction and desorption gas chromatography-mass spectrometry
VU	Vrije Universiteit Amsterdam

Summary

The second round of the interlaboratory study on microplastics consisted of three types of test materials: a standard-like material (i.e. tablet), a spiked sediment and a spiked fish sample. Participants were requested to identify the polymer type as well as the number of particles and/or mass of particles (in total and per polymer type) in these test materials.

Compared to the previous round (n = 35 of which 30 submitted results), a larger number of laboratories participated in this round (n=59), of which 35 laboratories submitted results before the deadline (completion rate of 59%). The main reason of laboratories being unable to submit data before the deadline was the COVID-19 situation, despite the extension of the deadline. Almost all laboratories reported results for the tablet (QMP002SW: n=33), followed by the sediment (QMP003MS: n=28). The least results were reported for fish (QMP004BT), but results were still reported by the majority of laboratories (n=24). While most laboratories still reported the number of particles (n=16-25), an increasing number of laboratories (n=10-11) reported the mass of plastic (i.e. mg/kg by GC-MS) compared to previous round (n=2).

The added polymers were the most frequently reported polymers in the tablets and environmental samples, with the majority of laboratories (61-64%) identifying the added polymers. A large variation was found in reported number of particles in the tablet QMP002SW (relative standard deviation 46-83%), while for the environmental samples this was larger still (85-231%). The variation found in the tablet was comparable to the previous interlaboratory round which was 29-91%, and which had higher number of participants.

With regard to the preparation of materials, it is clear that different techniques are required to ensure homogeneous test materials that represent the various environmental compartments.

1 Introduction

Microplastics are present in every environmental compartment and have gained recent interest as an environmental pollutant. 'Plastic' is not a well-defined analyte, but rather a set of materials that encompass a wide range of high molecular weight synthetic polymers such as thermoplastics and thermosets. 'Microplastics' are plastic particles spanning 6 orders of magnitude in particle size (low nanometre to 5 mm) and a large variety of chemical compositions: (co)polymers, chemical additives, residual monomers, fillers, catalysts, non-intentionally added substances (NIAS) etc.

The diversity of this analyte class gave rise to a search for fit for purpose methodologies to answer the burning questions in microplastic research and to support plastic pollution monitoring and mitigation policies under consideration by state and non-state actors. To date there are no validated standard methods available for the analysis of microplastic and various number of analytical protocols, methods and techniques are used. The analysis of microplastics is difficult due to the large number of different polymers, size fractions and shape. Furthermore, as there is still not consensus on the reporting format, microplastic are reported as number of particles, fibres or mass of different size fractions. There is an obvious need to validate and harmonize various methods. Another challenge analytical scientists face with microplastics analysis is how to check and demonstrate analytical proficiency. Open interlaboratory studies (ILSs) are very limited in number, and there is still a total absence of certified reference materials with which to investigate analytical proficiencies.

Participation in ILS studies increases confidence in the data produced, both for the analytical laboratories and the data users. For accreditation, regular proficiency testing will eventually be required. ILS studies will also present a 'state of the art' of the analytical procedures used for polymer identification and quantification and are a useful tool for method development and further standardisation. Each participating laboratory receives a confidential laboratory code and an anonymized study report presenting the overall results at the end of the round. Participants benefit from follow-up workshops in which the study results of the testing rounds are discussed with regard to analytical performance of different methods used.

The Vrije Universiteit Amsterdam (VUA), the Norwegian Research Institute for Water Research (NIVA) and WEPAL-QUASIMEME Laboratory Performance Studies (Wageningen Environmental Research) have taken the initiative to organise an interlaboratory study on microplastics. The study has been supported by the NORMAN workgroup nano-and micro scale particulate contaminants, which has recognized microplastics as an emerging issue. The four institutions have joined forces to set up a program to address the quality of microplastic analyses.

As a first step, a workshop on microplastics was organised in Amsterdam, the Netherlands, in November 2018. During this workshop (ca. 110 participants) it was generally agreed that an ILS on microplastics was needed, preferably designed in a step-wise way. Because this ILS focuses on a new and not yet standardized analysis, this study was classified as a 'Development Exercise' (DE), and coded DE-17. In 2019 the first round was held, with the analysis of 'standard' like test samples. The objective of this round was to assess the ability to determine the polymer type and number or mass of polymer particles in 12 samples prepared specifically for this exercise, i.e. six samples containing of pre-production pellets, five dissolvable soda tablets containing different (smaller) polymer particles and one blank soda tablet. In total, 34 laboratories participated with their own method of choice, of which 30 submitted data. A variety of identification and quantification methods (n=7) was used. The majority of the laboratories correctly identified the types of polymers in all pre-production pellets with the exception of LDPE, which was identified as HDPE by some participants, indicating satisfactory performance. The analysis of the smaller particles in the soda tablets varied however considerably between laboratories.

This report describes the design and the results of the second ILS round DE-17, in which complexity and difficulty were increased with regard to the first round. The objective of this second round was the same as the first round, i.e. assess the ability to determine the polymer type of plastic particles, as well as the number or mass of plastic particles, but this time also spiked environmental samples were included.

1.1 Confidentiality of results

The confidentiality of the results is extremely important in the WEPAL-QUASIMEME programs. In the report only the laboratory codes are mentioned in the data reporting and therefore, no list of participants is included in this report. When an accreditation body or a regulatory authority requests the proficiency test results to be provided by WEPAL-QUASIMEME, the participants shall be notified and asked for permission first.

Participants may not use or report individual data from other laboratories. Assigned values, means and standard deviations of the interlaboratory studies published in this report may be used.

2 Materials and methods

2.1 Study design

This study was setup in agreement between WEPAL-QUASIMEME, VUA and NIVA. WEPAL-QUASIMEME is a leading expert in the organisation of interlaboratory studies with a focus on e.g. the marine environment. It is accredited for organizing proficiency tests for several determinands and matrices. WEPAL-QUASIMEME handled the logistics and analysed the data. VUA has an extensive experience in environmental analysis and in the organization of interlaboratory studies, many in collaboration with WEPAL-QUASIMEME, and is actively involved in the field of microplastics. VUA organised the preparatory workshop, coordinated the project and reporting, and gave input to the data interpretation. NIVA is Norway's leading institute concerning the aquatic environment. NIVA is involved in several quality assurance and quality control (QA/QC) studies and develops certified reference materials for different contaminants including microplastics. NIVA has prepared a number of microplastic standard and test materials.

The developing exercise was designed in a step-wise manner, consisting of a number of rounds of sending out samples for analysis to participants, collecting the participants' data, and then analysing and reporting the data back to participants. The first step (i.e. the first round), started with the analysis of 'standard' like test samples. This creates a basis for laboratories to check their performance in both identifying and quantifying polymers in samples in the absence of a (complex) matrix. This round included both the standard like samples as well as fortified environmental samples. After the three rounds of the developmental exercise, the analytical methodologies for microplastics are expected to be better comparable and will be included in the routine proficiency testing scheme of WEPAL-QUASIMEME.

National reference, governmental, research, academic and commercial laboratories as well as other research facilities world-wide were invited to participate. The analytical work of ILS DE-17 was performed between May 2020 and August 2020. Participants were asked to identify and quantify, i.e. count particles (integer) and/or determine the mass of particles (mg or μ g) and polymer types in six preproduction pellets and six tablets, using their own method of choice. In addition to the results, information was requested about the participants' analysis methods for a more in-depth analysis of the submitted data as well as performance characteristics. All the requested data was filled in and submitted by Excel report forms. The laboratory code of the participating laboratories is kept confidential and will not be revealed to other participants.

2.2 Material preparation

2.2.1 Standard-like test materials

The tablets were prepared by NIVA. They consisted of a mixture of sodium hydrogen carbonate (NaHCO₃) citric acid ($C_6H_8O_7$), and a binder (lactose) which were not expected to interfere during the analysis as the tablets completely dissolve in water. The tablets were made by hand by combining the ingredients and the different polymers into the mixture. The mixture was poured into a metal form in which the tablets were moulded by applying pressure. Blank tablet (QMP001SW) consisted only of the ingredients without

the addition of polymers. No lubricants were added to the mixture as most of them are not completely soluble in water. The tablets were sealed in an aluminium strip before shipment.

The following polymers: polyethylene (PE), polyethylene terephthalate (PET), polyvinylchloride (PVC) and polystyrene (PS) in powder form, were sieved using a vibratory sieve shaker, resulting in fractions of 500 μ m to 50 μ m, but only the fractions of 125–150 μ m, 100–50 μ m, 50–150 μ m and 100–150 μ m, respectively, were added to the tablets.

Homogeneity of the tablets samples was verified by analysing 10 tablets from the batch QMP002SW. The total number of particles found was 71 \pm 6 (RSD 8%) for QMP002SW. This was considered good in relation to the expected variation between the laboratories. The number and mass of the polymers are given in Table 2-1.

2.2.2 Environmental samples

Two environmental test materials were prepared by VU. One jar labelled as QMP003MS contained ca. 20 g dry marine sediment (Westerscheldt, the Netherlands). A second jar, labelled as QMP004BT contained ca. 5 g freeze dried blue whiting (North Sea) with a fat content of 3.2% (0.8% fat before freeze-drying). Both fish and sediment were tested for presence of microplastic particles by microscopy. The total number of microplastic particles in 100 mg freeze-dried fish remained under the detection limit (<1.2 particles, or <60 particles per jar, or 12,000 particles/kg). As 8-10 particles were detected in 5 g sediment, the sediment was heated up to 600 °C overnight. After this treatment no particles were detected by microscopy.

The different polymer fragments were purchased from Cospheric (Santa Barbara, CA, USA). i.e. polymethyl methacrylate (PMMA) in fractions of 63-75 μ m and 90-106 μ m, PE in fractions of 53-63 μ m and 63-75 μ m, and PS in a fraction of 85-105 μ m. The ranges in sizes in each fraction were confirmed by microscopy determination.

After homogenization, glass jars were filled with either ca. 20 g sediment or 5 g fish. Because we wanted to obtain microplastics levels above the detection limit of Pyr-GC-MS analysis (7-100 mg/kg, dependent of method), it was decided to have a spiked concentration of ca. 5-10 particles/mg of each polymer type. An overview of added polymer types, size fraction and number is given in Table 2-1. Based on the recorded weight of the sample, particles were added by weight, with a RSD values between jars below 3% for sediment and below 7% for fish.

2.3 Analytes of interest

For the tablet (QMP002SW) the results on the *polymer type of plastic particles present*, and the *number* of plastic particles *per tablet (no. P/tablet)* and/or the *mass* of the plastic particles *per tablet (mg/per tablet)* had to be reported. For the environmental samples (QMP003MS and QMP004BT) the results on the *polymer type of plastic particles present*, and the *number* of plastic particles *per kg (no. P/kg)* and/or the *mass* of the plastic particles *per kg (no. P/kg)* and/or the *mass* of the plastic particles *per kg (mg/kg)* had to be reported. A blank tablet with no added plastic particles (QMP001SW) was to be analysed and reported with the same procedural steps as the other tablet. This sample was used as a quality control sample only and was not validated statistically in terms of standard deviation or z-scores.

Table 2-1 shows the characteristics of the tablet and environmental samples, of which the data for the tablets have been obtained by homogeneity studies carried out by NIVA. For the environmental samples, the number of the added polymers particles for each batch are given. These are based on the weight of sample added and the density of the average particle size added.

QMP002SW	µg added to tablet	(n particles)	particle size (µm)
Polyethylene terephthalate (PET)*	14.6	30	100 - 150
Polyvinylchloride (PVC)	17.3	16	50 - 150
Polystyrene (PS)	15.1	15	100 - 150
Polyethylene (PE)	21.7	15	125 - 150
Total Microplastics	68.7	76	50 - 150
QMP003MS	mg/kg added**	(<i>n/kg</i> particles)	particle size (µm)
Polymethyl methacrylate (PMMA)	2052	5.00 * 106	90 - 106
Polyethylene (PE)	900	5.00 * 10 ⁶	63 - 75
Total Microplastics	2952	10.00 * 106	63 - 106
QMP004BT	mg/kg added**	(<i>n/kg</i> particles)	particle size (µm)
Polymethyl methacrylate (PMMA)	1406	10.04 * 106	63 - 75
Polyethylene (PE)	1129	10.26 * 10 ⁶	53 - 63
Polystyrene (PS)	2074	4.94 * 10 ⁶	85 - 105
Total Microplastics	4609	25.24 * 10 ⁶	63 - 105

Table 2-1 Characteristics of the samples distributed

* Densities of added polymers: PET: 1.40 g/cm³, PVC: 1.40 g/cm³, PS: 1.07 g/cm³, PE: 0.92 g/cm³, PMMA: 1.18 g/cm³ (<u>http://polymeracademy</u>). ** Concentration for QMP003MS and QMP004BT estimated based on mass added and density of average particle size.

2.4 Methods applied

Figure 2-1 shows an overview of methods applied, while Appendix B provides full details of reported methods per laboratory. It was noted that most participants reported the filtration, separation and cleanup methods used as additional information rather than selecting the options available. This is something to consider for the third round. An effort was made to sort the information into main categories. Six participants did not report any data on applied methods. Overall, the applied methods varied largely between the 29 laboratories that submitted data.

For the filtration methods four laboratories reported sieving with sieves ranging from 25 to 5000 μ m. Most participants (n=24) reported to have used filtration, of which one after sieving, while two participants reported having applied no filtration. Nine different types of filters were used by the participants that used filtration (Figure 2-1A).

The majority of laboratories (n=19) had also applied density separation. Five different types of salts were used (Figure 2-1B), with many different densities (Appendix B). For clean-up 19 participants reported to have used digestion, while two participants used pressurized liquid extraction. Digestion was done by hydrogen peroxide (n=12) or potassium hydroxide (n=9, Figure 2-1C), and sometimes both (Appendix B).

In total eight different identification methods were reported, of which Fourier transform infrared spectroscopy in combination with microscopy (μ FTIR) was the most commonly applied (43%). Compared to first round, the use of μ FTIR doubled (n=16 vs. 7), while the use of attenuated total reflection FTIR (ATR-FTIR) decreased significantly (n=2 vs. 14). The use of GC-MS (i.e. pyrolysis and gas chromatography-mass spectrometry (pyr-GC-MS) and thermal extraction and desorption GC-MS (TED-GC-MS)) also increased to n=5 vs. 2 in the first round, while the number of submitted datasets reporting on mass (i.e. mg/kg, Figure 3-1) is even higher (n=11), possibly due to not reporting method information by some labs and including gravimetric determinations. This makes the frequency of using

GC-MS in this round almost equal to that of the use of FTIR. Two participants reported using Nile red staining, of which one in combination with μ FTIR. Three participants reported having used microscopy only (without identification method), while two participants reported the mass after a gravimetric determination.

Figure 2-1 Summary of data on reported sample preparation and determination methods for microplastics determination in tablets and/or environmental samples, with A) type of filter used, B), type of salt used, C) type of digestion used and D) type of determination method used. Detailed information per laboratory can be found in Appendix B.

2.5 Data assessment

The evaluation of the data reported for the tablets (QMP001SW and QMP002SW) and environmental samples (QMP003MS and QMP004BT) focused on the identification and quantification, both mass and number of particles of the polymers.

The data assessment was carried out according to the principles of data assessment employed by the WEPAL-QUASIMEME proficiency testing organisation (www.WEPAL.nl). All data received from the participants were entered into an excel database and assessed using a robust method (NDA statistics, Molenaar et al. 2018) enabling direct comparison between participants. See appendix C for further details.

2.6 Z-score assessment

In this report, z-scores are presented for the polymers that were added to the tablet QMP002SW. Please be aware that these z-scores are given to enhance the insights deduced from the ILS and as a support to improvements of methodology. The z-scores are in this case not intended to be used in evaluating the

performance of laboratories. No z-scores were calculated for the other samples as the variability in the results was too big.

Z-scores are calculated as

$$z_i = \frac{(\bar{x} - x_{pt})}{\sigma_{pt}}$$

In this formula, z_i is the z-score of laboratory i, x_{pt} is the assigned value (AV, i.e. consensus value of the dataset), and σ_{pt} is the standard deviation for proficiency assessment. The z-score z_i represents how far the result of laboratory i is from the assigned value in terms of the standard deviation σ_{pt} .

In this study, σ_{pt} is set to be 12.5% of the assigned value. This approach differentiates the dataset in three zones:

- Zone I: results that are within 25% of the assigned value, in proficiency tests denoted as 'satisfactory results';
- Zone II: results with 2<|z|<3, thus that differ in absolute sense between 25% and 37% from the assigned value, in proficiency tests referred to as 'questionable results';
- Zone III: results that differ 37.5% or more from the assigned value, indicated in proficiency tests as 'unsatisfactory results'.

The three zones of z-scores are illustrated in Figure 2.4.

Figure 2-2 Illustration of z-score zones in relation to the assigned value.

The data have been analysed with a robust method described by Cofino *et al* (2000). The mathematical basis of the method has been strengthened in Molenaar et al. (2018).

The robust mean of the datasets is used as the assigned value x_{pt} . In proficiency tests, the standard uncertainty $u(x_{pt})$ of the assigned value is incorporated in the calculation of the z-score (giving rise to the z'- score, ISO 13528 (2016)). The term $u(x_{pt})$ is given by

$$u(x_{pt}) = 1,25 * \frac{s^*}{\sqrt{p}}$$

where s^* is the robust standard deviation of the exercise and p the number of data analysed.

In the calculations presented, the uncertainty in the assigned value is not taken into consideration as it hampers a consistent interpretation of the z-scores for the purpose of this study. The standard uncertainty of the assigned value is, however, given to illustrate its magnitude.

Z-scores have been calculated for the individual polymers that were added to the tablet (QMP002SW) and for the total number of particles in these tablets. The assigned values, the robust standard deviations, the standard uncertainties and the standard deviation used to assess the data is given in Table 3-3 and Table 3-5. These tables show that the standard deviation used to assess the data are relatively high and illustrate that z-scores in this study should not be used to judge the performance of laboratories.

3 Results

An overview of participating laboratories and submitted data is given in Figure 3-1. In total, 59 laboratories participated of which 35 laboratories were able to submit the results before the deadline. COVID-19 was the main reason that laboratories were unable to submit data before the deadline, even after extension. Compared to the previous round, an increasing number of laboratories participated (59 vs 35) and submitted data (35 vs 27). All 35 laboratories submitted data for the tablet, whereas 24 for the blank tablet. The majority of the laboratories also submitted data for the sediment (32) and fish sample (26).

Most laboratories still reported the number of particles (62-71%). Compared to the last round (n = 2), an increasing number of laboratories (n = 9-11) reported the mass of plastic (i.e. mg/kg by pyr- or TED-GC-MS).

Figure 3-1 Flow diagram showing number of participants and number of submitted results.

3.1 Polymer type identification

Table 3-1 shows the number of laboratories that reported qualitatively, in total, mass and particles. The added polymers were the most abundant reported polymers in the tablets and environmental samples. The majority of laboratories identified the added polymers. Of all added polymers types, polyethylene was found most often (n=15-20), and PMMA least (n=11-13). The majority also identified the correct size fraction (50-299 μ m). In all sample types, one to three laboratories occasionally identified the correct polymer type but incorrect size fraction (300-5000 μ m).

	Polymer added	N labs reporting polymer type	N labs that correctly identified polymer type added	% labs that correctly identified polymer type added
QMP002SW	Polyethylene		20	87%
	Polyvinylchloride	23	17	74%
	Polystyrene		19	83%
	Polyethylene terephthalate		16	70%
QMP003MS	Polymethyl methacrylate	19	13	68%
	Polyethylene		17	89%
QMP004BT	Polymethyl methacrylate		11	65%
	Polyethylene	17	15	88%
	Polystyrene		12	71%

Table 3-1 Number of laboratories that correctly identified the polymer types

3.2 Determination of plastic particles by numbers

An overview of inter-comparability of reported size fractions of particles (of added polymers and total) between laboratories is given in Table 3-2. Large differences were found in reported numbers of particles in the tablet (RSD 46-83%), while even larger differences were found for the environmental samples (RSD 85-231%). The differences found in the tablet were comparable to those reported in the previous round, 29-91%.

Table 3-2 Inter-comparability of reported number of particles (of added polymers and total) between laboratories

	Polymer added	RSD (%) - size fraction that was added (50-299 μm)	RSD (%) - all sizes
QMP002SW	Polyethylene	58	57
	Polyvinylchloride	83	55
	Polystyrene	50	49
	Polyethylene terephthalate	78	73
	Total polymers	46	62
QMP003MS	Polymethyl methacrylate	89	103
	Polyethylene	92	97
	Total polymers	160	155
QMP004BT	Polymethyl methacrylate	96	85
	Polyethylene	125	129
	Polystyrene	117	107
	Total polymers	171	231

3.2.1 Tablet (QMP002SW)

Table 3-3 summarizes the results obtained for the *number of particles* for the spiked tablet (QMP002SW), while Table 3-4 and Figure 3-2 show the *number of particles* in the tablet reported per laboratory. Appendix A provides full details of reported types and number of plastic particles per laboratory. Assigned values for the number of total polymer particles (40/per tablet, Table 3-3) was a factor of 2 lower than the spiked value (76/per tablet, Table 2-1). The assigned values for the number of added polymer particles (8-9 /per tablet) were a factor of 2 or, in case of PE (11 vs 30 /per tablet), even more (factor of 3) lower than the spiked value (15-16 /per tablet). Interestingly, one laboratory (Q101) was close to the number of total polymers added to the tablet, but did not identify the correct polymers (Figure 3-2).

Table 3-3 Summary statistics for number of added polymers and total number of particles in tablet (QMP002SW)

Polymer type	N labs	Assigned value	Robust SD of study	Standard uncertainty	Added number of particles	SD used to calculate z-scores (12,5% of AV + uncertainty)
Polyethylene	16	11	6.4	2.0	15	2.5
Polyethylene					30	
terephthalate	12	9.3	6.8	2.5		2.7
Polystyrene	14	9.2	4.5	1.5	15	1.9
Polyvinylchloride	13	8.6	4.8	1.7	16	2.0
Total polymers	25	40	25	6.3	76	8.0

Table 3-4 Reported number of particles per tablet (QMP002SW) for the polymers added, total number of polymers and other polymers

Labcode	Polyvinyl chloride total	Polyethylene total (HD+LD)	Polyethylene terephthalate Total	Polystyrene total	Calculated totals for added polymers	Reported totals for polymers	Totals for other polymers
Q101						75	
Q104		9	5	7	21	30	9
Q110	5	12	11	10	38	40	2
Q122	7	16	11	12	46	47	1
Q134	20	17	2	7	46	46	
Q3160						6016	6016
Q3231	6	15	4	1	26	56	30
Q3877b						137	
Q3878	20	20	10	10	60	192	132
Q3882	6	1		6	13	17	4
Q3886						7	
Q3887	14	7	18	17	56	57	1
Q3888b	7	15	4	11	37	46	9
Q3889	12				12	31	19
Q3890	15	6	18	10	49	50	1
Q3911	1	9	8	13	31	38	7
Q3913	8	9	15	17	49	49	
Q3917	10	15	9	6	40	42	2
Q3926						49	
Q3932		1634			1634	1634	
Q3936						19	
Q3940						255	
Q3943		3		3	6	6	
Q661						247	
Q871		2224			2224	2224	
Added	16	15	30	15	76	76	0

Figure 3-2 Reported number of particles for the individual polymers spiked and the total number of polymers for the tablet sample QMP002SW.

3.2.2 Environmental samples (QMP003MS and QMP004BT)

Table 3-5 and Figure 3-3 show the number of particles reported per laboratory for the spiked sediment (QMP003MS), and Table 3-6 and Figure 3-4 for spiked fish (QMP004BT). Appendix A provides full details of reported types and number of plastic particles per laboratory. While assigned values are given in Appendix A, z-scores are not calculated due the large differences found in results (Tables 3-2, 3-5 and 3-6). It is clear from Tables 3-5 and 3-6 and Figures 3-3 and 3-4 that most of the reported results were ca. a factor of 10 lower than the added value.

Labrada	Delvethvelere	Polymethyl	Totals for added	Reported totals	Totals for other
Labcode	Polyetnyelene	methacrylate	polymers	for polymers	polymers
Q104	2.147.663	2.937.695	5.085.358	5.085.358	
Q110	707.921	903.210	1.611.131	1.611.131	
Q122	1.558.470	1.363.661	2.922.131	2.922.131	
Q134	4.168.421	2.344.737	6.513.158	6.513.158	
Q153				54.488	
Q3160				5.611.434	5.611.434
Q3231	507.401	428.905	936.306	936.639	333
Q3877b				3.073.149	
Q3878	15.512	24.049	39.561	79.268	39.707
Q3886				306	
Q3887	4.030.190	2.997.392	7.027.582	7.027.582	
Q3889	777.989		777.989	777.989	
Q3890	807.007	608.795	1.415.802	1.415.802	
Q3913	1.490.142	2.074.736	3.564.878	3.564.878	
Q3922				4.722	
Q3926				156.882	
Q3932	2.903.587		2.903.587	2.903.587	
Q3936				133.526	
Q3940				20.054	
Q661				310.296	
Q871	455.515.445	192.166.942	647.682.387	647.682.387	
Added	4.998.903	5.003.367	10.002.270	10.002.270	

Table	3-5	Reported	l number	of	particles	for	the	polymers	added	to	the	sediment	sample
(QMP	003N	/IS), total I	number o	f po	lymers ar	nd of	ther	polymers					

Figure 3-3 Total number of particles reported for the polymers added, other polymers and for all polymers in the sediment sample QMP003MS

Table 3-6 Reported number of particles for the polymers added to the fish sample (QMP004BT), total number of polymers and other polymers

Labcode	Polymethyl methacrylate total	Polyethylene total (HD+LD)	Polystyrene total	Calculated totals for added polymers	Reported totals for polymers	Totals for other polymers
Q110	3.840.361	3.341.114	5.440.512	12.621.987	12.621.987	
Q122	2.864.815	1.762.963	4.187.037	8.814.815	8.814.815	
Q153					1.050.769	
Q3160					5.382	5.382
Q3231	409.406	1.426.976	333.383	2.169.765	2.174.182	4.417
Q3877b					2.097.999	
Q3878	18.996	66.487	49.390	134.873	1.052.391	917.518
Q3886		186		186	2.050	16.864
Q3887	1.457.866	4.157.385	2.646.801	8.262.052	8.262.053	
Q3889		539.502		539.502	545.110	5.608
Q3890	4.299.162	5.080.593	2.390.716	11.770.471	11.770.471	
Q3922					1.538	
Q3926					305.217	
Q3943	9.871.725	15.794.760	740.379	26.406.864	26.406.864	
Q661					1.300.289	
Q871	3.040.850	6.976.788	1.226.149	11.243.787	11.243.787	
Added	10.040.421	10.264.701	4.939.222	25.244.344	25.244.344	

Figure 3-4 Total number of particles reported for the polymers added, other polymers and for all polymers in the biota sample QMP004BT.

3.3 Determination of plastic particles by mass

The variation in reported *mass* of total polymers was large, with RSDs of 50, 93 and 120% for the tablet, sediment and fish, respectively. Appendix A provides full details of reported types and mass of particles per laboratory.

Table 3-7 summarizes the results of total polymers by mass obtained for the tablet (QMP002SW), spiked sediment (QMP003MS), and spiked fish (QMP004BT). Table 3-8 and Figure 3-5 show the mass of particles reported per laboratory for the tablet, and Table 3-9 and Figure 3-6 for the environmental samples.

The variations in the reported mass of total polymers, expressed as RSD were 50% for the tablet, 93% for the sediment and 120% for the fish. We have decided not to calculate z-scores, due to the low number of data entries in combination with the high variation in the reported results.

Just like the reported number of particles, the assigned value for the mass of total particles added to the tablet (0.045 mg/tablet) was about half of the spiked mass (0.069 mg/tablet, Table 2-1). The assigned value for the mass of total particles added to the sediment sample (1333 mg/kg) was closer (i.e. factor of 2.2) to the spiked mass (2952 mg/kg) compared to the reported number of particles (factor of 10). The assigned value for the mass of total particles added to the fish sample (6361 mg/kg) was also closer (factor of 1.3) but higher than the spiked value, i.e. 6361 mg/kg versus 4609 mg/kg.

Table 3-7 Overview of the summary statistics of the reported weights of the total of microplastic polymers found in the spiked samples by pyrolysis GC-MS.

Sample	N labs	Units	Assigned Value	Robust SD of study	Robust RSD of study	Standard uncertainty	SD used to calculate z- scores (12.5% of AV + uncertainty)
QMP002SW	9	mg/tablet	0.045	0.023	50%	0.009	0.011
QMP003MS	11	mg/kg	1333	1245	93%	469	-
QMP004BT	10	mg/kg	6361	7610	120%	3008	-

Sample	Lab	Poly-	Poly-	Poly- ethylene	Polyethylene	Polymethyl	Poly-	Poly-	Polyvinyl	Total polymers
	H221	unnac	carbonate	ethylene	terepittilalate	< 0.1	propyrene	Styrene	0.9	0.9
	Q871							390		390
	Q980		< 7	< 160	< 20	< 5	< 30	< 16	18	18
	Q3175	80		60	380		< 20	< 10	< 100	520
QMP001SW	Q3929									< 2000
	Q3934									5700
	Q3935									50
	Q3936									23
	Q3941									160
	H221			1.1	1.0	< 0.1		12	19	33
	Q871									47
	Q980		< 7	< 160	< 20	< 5	< 30	6	42	48
	Q3175	80		50	440		< 20	50	< 100	620
	Q3189			2	9			2	38	52
QMP002SW	Q3929									< 2000
	Q3934									22700
	Q3935									1010
	Q3936									45
	Q3941									180
	Added			21.7	14.6			15.1	17.3	68.7

Table 3-8 Overview reported weights ($\mu g/tablet$) of microplastics found in the tablets (QMP001SW and QMP002SW)

Figure 3-5 Reported mass for the added polymers and for the total mass of polymers in the tablet sample QMP002SW.

Table 3-9 Overview reported weights (mg/kg) of microplastics found in sediment (QMP003MS) and fish (QMP004BT) sample

Sample	Labcode	Poly- amide	Poly- carbonate	Poly- ethylene	Polyethyelene terephathalate	Polymethyl methacrylate	Poly- propylene	Poly- styrene	Poly- vinyl	Total polymers
									chloride	
	H221			522		1140		< 34.2	78	1740
	Q871			2133				8.07		2141
	Q980		< 1	1310	< 5	1330	< 5	< 3	60	2700
QMP003MS	Q3175	20.5		152	71.9		< 0.02	< 0.01	< 0.1	244
	Q3189			300	1.56	185			7.41	494
	Q3877b			936					434	1370
	Q3932			846						846
	Q3934									3561
	Q3935									486
	Q3936									250
	Q3941									2161
	Added			900		2052				2952
			1				1			
	H221			1093		1176		1189	398	3856
	Q871			325				3222		3547
	Q980		< 1	4030	170	1170	< 5	60	8900	14330
QMP004BT	Q3189			307		286		345		938
	Q3877b			1356				1223	8437	11016
	Q3929									11629
	Q3932			33050						33050
	Q3934									60.6
	Q3935									377
	Q3941									11844
	Added			1129		1406		2074		4609

Figure 3-6 Total mass reported for the polymers added, other polymers and for all polymers in the sediment sample QMP003MS.

Figure 3-7 Total mass reported for the polymers added, other polymers and for all polymers in the fish sample QMP004BT

3.4 Z-Scores

Z-scores for the reported number of particles in tablet are presented in Table 3-10. Z-scores for the biota and sediment samples were not calculated because of the variation in the results uploaded.

Table 3-10 Z-scores calculated for the polymers added and for the total of polymers added to t	the
ablet sample QMP002SW	

Laboratory code	Polyethylene	Polyethylene- terephthalate	Polystyrene	Polyvinyl chloride	Total polymers
Q101					4.3
Q104	-0.9	-1.6	-1.1		-1.3
Q110	0.3	0.6	0.4	-1.9	0.0
Q122	1.9	0.6	1.5	-0.8	0.8
Q134	2.3	-2.7	-1.1	5.8	0.7
Q3160					745.1
Q3231	1.5	-1.9	-4.3	-1.3	2.0
Q3877b					12.1
Q3878	3.6	0.3	0.4	5.8	18.9
Q3882	-4.2		-1.7	-1.3	-2.9
Q3886					-4.1
Q3887	-1.7	3.2	4.1	2.7	2.1
Q3888b	1.5	-1.9		-0.8	0.7
Q3889	-2.2		1.0	1.7	-1.1
Q3890	-0.9	3.2	0.4	3.2	1.2
Q3911	-0.9	-0.5	2.0	-3.9	-0.3
Q3913	1.5	2.1	4.1	-0.3	1.1
Q3917		-0.1	-1.7	0.7	0.2
Q3926					1.1
Q3932	662.3				198.7
Q3936					-2.6
Q3940					26.8
Q3943	-3.4		-3.3		-4.3
Q661					25.8
Q871	903.2				272.3

4 Discussion

4.1 Tablets (QMP002SW)

4.2 Marine sediment sample (QMP003MS)

Several reports describe the amounts of microplastics (MPs) that are present in the aquatic environment. A review by Van Cauwenberghe (2015) shows ranges of MPs in marine and estuarine sediments and on beaches from all over the world. A realistic estimate that emerges from this review for the North Sea shows numbers around 100 particles per kg dry sediment with a size range of 38 μ m - 1 mm for both harbors and the central North Sea. In the same review MP data from Florida, USA, are reported in the same range. The intake of a GC/MS pyrolysis cup is ca. 75 μ g. However, there are several steps before the sample arrives in the pyrolysis cup. Normally, 5 g of a dry sediment sample is taken for extraction. After dilution, due to extraction (e.g. in 40 mL), sub-sampling into the pyrolysis cup (ca. 75 µg), and a split injection of 1:100, the corresponding amount of dry sediment that is fully pyrolized and brought on the GC column is ca. 0.1 mg. The sensitivity of the pyrolysis analysis is ca. 10 ng absolute. This means that a concentration of 10 ng/100 μ g can be detected, or 100 mg/kg. Dierkes et al. (2019) report an LOO of 7 mg/kg, using the same technique. They concentrated the extracts after extraction. The weight of one PET particle of 100 μ m diameter, assuming it has a spherical shape, is ca. 722 ng. The detection limit of of 7 mg/kg of the pyr GC/MS corresponds for this size of PET particle to ca. 140,000 particles per kg. For particles with a diameter of 10 μ m this is 140 million particles/kg. For 1 mm diameter particles this will be 140 particles per kg, which comes close to the level of 100 particles per kg dry marine and estuarine North Sea sediment reported by Van Cauwenberghe (2015). For other polymer types the result is somewhat different, dependent of the specific density of the polymer. For wet sediment, about a factor 10 higher sample intake would be needed. These numbers show the difficulty and complexity of the MP analysis. The size of the particles is of utmost importance for the detection limit of the pyrolysis technique. Dierkes et al. (2019) analysed sediment from the river Rhine and found 30 mg/kg for PP and PE. This corresponds roughly with 40,000 particles/kg wet sediment if the diameter would be 100 μ m, or ca. 400,000 particles /kg dry sediment.

To enable labs reporting data for this interlab study with different techniques, we have spiked the sediment and fish test materials up to 50,000 - 100,000 particles/kg per polymer with two polymer types in sediment and three in the fish material. The size ranges were ca. $50-100 \mu$ m. According to the above calculations, this corresponds with a levels of ca. 72 mg/kg dry sediment, ca. 10-fold higher than the detection limit reported by Dierkes et al. (2019), which seems realistic, although on the low side, given the reported PE and PP levels in river Rhine sediment of ca. 30 mg/kg wet sediment or 300 mg/kg dry sediment (Dierkes et al. (2019).

Unfortunately, because of difficulties encountered in homogenizing the fish and sediment materials, we had to decide to add a fixed number (weight) of MPs to each jar of both test materials. The particles were not homogenously distributed over the samples. This meant that the participants had to take to entire contents of the jars into analysis. The consequence was that participants who used counting techniques, had to count very high numbers of particles. This is obviously a learning element for a next study. Another preparation technique for sediment (and fish) samples is required. These observations also suggest that the sensitivity of the pyrolysis technique is still critical. It works fine for larger particles (>1 mm) but less good for smaller particles. Results from an microplastics interlaboratory study by Becker et al. (2020) for thermographic methods, including seven labs using pyrolysis GC/MS, show good results for concentrations of 5-20 μ g/mg or 5-20 g/kg. This is interesting, but it is immediately clear that the microplastics level of that study is 1,000-fold higher than observed in real world samples. Dierkes et al. (2019) reported that levels of ca. 30 mg/kg are found in river Rhine sediment. Therefore, the good results of the study of Becker et al. (2020) do not mean much for analyzing realistic samples. Our spiking level of sediment was more realistic that of Becker et al. (2020), although it created counting difficulties due to the advice to take the entire sample into analysis. The poorer RSD values obtained in the present study, may therefore mainly be caused by the lower MP levels spiked. Table 3.7 shows that when only considering the labs that used pyrolysis GC/MS, a large RSD value (93%) was found for the total mass of particles. Table 3.9 shows that only for polyethylene reasonable results were reported: 855 mg/kg, range 153-2133 mg/kg, whereas 900 mg/kg was added.

As regards the number of particles in the sediment test material, Table 3-5 shows that results are extremely widely distributed. The high numbers of particles, due to the need to take the entire sample into analysis, have obviously played a role in creating this wide spread in the data, but other factors can certainly not be excluded.

4.3 Fish sample (QMP004BT)

Wang et al. (2020) report a range of microplastic particle numbers in fish, including and probably mainly in the intestine track of 0.34 - 19 per individual fish for the Mediterranean and Rio de la Plata, resp. Jovanovic (2017) reports 0.01-2.2 particles in the gastro intestinal tract of various fishes worldwide with 1-6 particles per fish in which microplastic particles were detected (in several fishes no particles were detected). The size range reported is 26 μ m - 5 mm. Clearly, for this exercise the numbers of particles spiked for each polymer, ca. 10,000,000 per jar of 5 g, were much higher than occurs in nature. Massbased techniques would have great difficulty to find one or two particles in a fish, even for the larger particles. Although the absolute detection limit of pyr GC/MS is ca. 10 ng and one 100 μ m particle of e.g. PET weighs 722 ng, the issue is how to get that one particle in the final pyrolysis cup. Sub-sampling, concentration and splitting ratios are all critical. Mussels contain higher numbers of particles. Reports from the UK and Norway give a range of 1-6 and 1.5 (±2.3) particles per individual mussel (Mytilus edulis), respectively (Li et al., 2018, Bråte et al., 2018). However, a large part of that (83% according to Bråte et al. (2018)) are fibers. According to Qu et al. (2018), fibers accounted for > 60% of the microplastics in field investigations. It means that also for mussels mass-based techniques may have difficulties to quantify the mass of these low numbers of particles. Large sample intakes and thorough concentration will be needed. Qu et al. showed that the number of microplastic particles present in individual mussels (Mytilus edulis and Perna viridis) in Chinese waters is roughly the same as the number of microplastic particles per L seawater, with fibers being the dominant microplastics. The sizes of microplastics in the mussels were smaller than those in the water.

In the present study, the results for mass, determined with pyr GC/MS show an RSD value of 120%. The high standard deviation may be caused by the high variation that occurs when analyzing the small cups. Several cups will be needed to exclude the inhomogeneity that plays an important role in sub-sampling 75 μ g. Dierkes et al. (2019) recommend cryo-milling of environmental samples to improve the homogeneity of the samples and a better distribution of the MP particles over the sample. The results for the numbers of particles in Table 3-6 widely vary between 186 and 15.7 million, the last one being 'only' 50% off. Also for this fish materials, the particles were not homogenously distributed over the samples and we had to ask the participants to take into analysis the entire content of the jar, which was, for those that used counting methods, not a good idea. Z-scores were not given as they would be meaningless. It confirms that the spiking of the fish tissue was unrealistic and especially counting techniques were not prepared for analyzing the entire fish content of the jar.

Conclusions

The second round of this microplastics interlaboratory study has delivered valuable information on the current state-of-the-art of laboratories analysing microplastics. The increased number of participants, even in spite of the covid-19 crisis, was reassuring and showed the high interest worldwide. The results show a mixed picture. The identification of the polymer types in the tablets provided was generally good. The quantification in the tablets, and certainly also in the two environmental test materials was far from what is needed. Pyrolysis GC/MS was used more frequently now, but results were not better than in the first round of this exercise. With regard to the preparation of materials, it is clear that different techniques are required to ensure homogeneous test materials that represent the various environmental compartments. For fish and/or shellfish it is a challenge to supply test materials with realistic levels of microplastics, and the same is true for test materials containing fibers.

The results and challenges of the first and second round will be presented and in the upcoming workshop (20-21 May 2021). Final conclusions can then be drawn. During this workshop, the study design of the third round will also be discussed.

5 References

R. Becker, K. Altmann, T. Sommerfiled, U. Braun, Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison, J. Anal. Appl. Pyrol. 148 (2020) 104829.

I.L.N. Bråte, R. Hurley, K. Iversen, J. Beyer, K.V. Thomas, C.C. Steindal, N.W. Green, M. Olsen, A. Lusher Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study, Environ. Pollut. 243 (2018) 383-393.

L. Van Cauwenberghe, L. Devriese, F. Galgani , J. Robbens, C.R. Janssen, Microplastics in sediments: A review of techniques, occurrence and effects Mar. Environ. Res. 111 (2015) 5-17.

W.P. Cofino, J. Molenaar, P. Torfs, Evaluating proficiency tests, Wiley Online Library, https://doi.org/10.1002/9781118445112.stat04068.pub2.

W.P. Cofino, I. H.M. van Stokkum, D. E. Wells, F.Ariese, J-W. M. Wegener, R. A.L. Peerboom, A new model for the inference of population characteristics from experimental data using uncertainties. Application to interlaboratory studies, Chemom. Intell. Lab. Syst 53 (2000) 37-55.

G. Dierkes, T. Lauschke, S. Becher, H. Schumacher, C. Földi, T. Ternes, Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal. Bioanal. Chem. 411 (2019) 6959–6968.

A. Isobe, N. T. Buenaventura, S. Chastain, S. Chavanich, A. Cózar, M. DeLorenzo, P.I Hagmann, H. Hinata, N. Kozlovskii, A. L. Lusher, E. Martí, Y. Michida, J. Mu, M. Ohno, G. Potter, P.S. Ross, N. Sagawa, W. Joon Shim, Y. Kyoung Song, H. Takada, T. Tokai, T. Torii, K. Uchida, K. Vassillenko, V. Viyakarn, W. Zhang, An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles, Marine Pollution Bulletin, 46 (2019) 831-837.

B. Jovanovic, Ingestion of microplastics by fish and its potential consequences from a physical perspective, Integr. Environ. Assess. Manag. 13 (2017) 510-515.

J. Li, C. Green, A. Reynolds, H. Shi, J.M. Rotchell, Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom, Environ. Pollut. 241 (2018) 35-44.

P. Lischer, Robust statistical methods in interlaboratory analytical studies. In: Rieder H. (eds) Robust Statistics, Data Analysis, and Computer Intensive Methods. Lecture Notes in Statistics, 109 (1996). Springer, New York, USA.

J. Molenaar, W P. Cofino, P.J.J.F. Torfs, Efficient and robust analysis of interlaboratory studies, Chemom. Intell. Lab. Syst 175 (2018) 65-73.

https://polymeracademy.com/density-of-various-plastic/

X. Qu, L. Sua, H. Li, M. Liang, H. Shi, Assessing the relationship between the abundance and properties of microplastics in water and in mussels, Sci. Total Environ. 621 (2018) 679-686.

K. Shirono, K. Iwase, H. Okazaki, M. Yamazawa, K. Shikakume, N. Fukumoto, M. Murakami, M. Yanagisawa, T. Tsugoshi, A study on the utilization of the Youden plot to evaluate proficiency test results, Accred. Qual. Assur. 18 (2013) 161-174.

Statistical methods for use in proficiency testing by interlaboratory comparison, ISO 13528:2015.

W. Wang, J. Ge, X. Yu, Bioavailability and toxicity of microplastics to fish species: A review. Ecotox. Environ. Saf. 189 (2020) 109913.

Appendices

- A. Reported data and graphical output
- B. Additional method information
- D. NDA statistics

Appendix A

Total number of particles Analysis DE17 2020.1

Total number of particles Summary Statistics

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP001SW											
Total polymers	6.38	(No. p/tablet)		9.3	146	14	1	9.50	7.50	6.38	3.11
Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP002SW											
PE (50-299 μm)	10.6	(No. p/tablet)		6.1	57.5	14	0	10.5	4.50	10.61	2.04
Polyethylene total (HD+LD)	11.3	(No. p/tablet)		6.4	57.0	16	0	13.5	4.50	11.27	2.01
PET (50-299 μm)	8.34	(No. p/tablet)		6.52	78.1	12	0	8.50	4.50	8.344	2.35
Polyethyleneterephat. Total	9.30	(No. p/tablet)		6.82	73.3	12	0	9.50	5.00	9.296	2.46
PS (50-299 μm)	8.94	(No. p/tablet)		4.46	49.9	12	0	9.00	3.00	8.943	1.61
Polystyrene total	9.17	(No. p/tablet)		4.50	49.1	14	0	10.00	3.00	9.174	1.50
PVC (50-299 μm)	9.35	(No. p/tablet)		7.76	83.1	12	0	9.00	5.50	9.349	2.80
Polyvinyl Chloride total	8.65	(No. p/tablet)		4.76	55.1	13	0	8.00	3.00	8.646	1.65
Total polymers (50-299 µm)	39.9	(No. p/tablet)		18.4	46.1	16	0	44.0	13.0	39.86	5.74
Total polymers	40.2	(No. p/tablet)		25.0	62.2	25	0	49.0	19.0	40.20	6.25

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP003MS											
PE (50-299 μm)	1299420	(No. p/kg)		1196400	92.1	11	0	1490142	782221	1299420	450910
Polyethylene total (HD+LD)	1395786	(No. p/kg)		1355065	97.1	12	0	1524306	916645	1395786	488967
PMMA (50-299µm)	1489059	(No. p/kg)		1327153	89.1	9	0	1363661	934756	1489059	552980
Polymethylmethacrylate total	1501040	(No. p/kg)		1546763	103.0	10	0	1719199	1164450	1501040	611418
Total polymers (50-299 µm)	1011523	(No. p/kg)		1614963	159.7	14	0	1176221	1109343	1011523	539521
Total polymers	1344449	(No. p/kg)		2086266	155.2	21	0	1415802	1411080	1344449	569076

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP004BT											
PE (50-299 μm)	1883359	(No. p/kg)		2358360	125.2	9	0	1762963	1702175	1883359	982650
Polyethylene total (HD+LD)	2379800	(No. p/kg)		3069872	129.0	10	0	2552039	2249044	2379800	1213473
PMMA (50-299µm)	2192190	(No. p/kg)		2104095	96.0	7	0	2864815	1434347	2192190	994091
Polymethylmethacrylate total	2392705	(No. p/kg)		2024222	84.6	8	0	2952833	1420648	2392705	894588
PS (50-299 μm)	2107184	(No. p/kg)		2473047	117.4	7	0	2390716	1796321	2107184	1168405
Polystyrene total	1769320	(No. p/kg)		1890362	106.8	8	0	1808433	1271552	1769320	835430
Total polymers (50-299 µm)	2068174	(No. p/kg)		3539966	171.2	11	0	2174182	2172132	2068174	1334175
Total polymers	941297	(No. p/kg)		2173988	231.0	16	0	1699144	1695428	941297	679371

Total number of particles Summary Statistics

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
ABS (50-299 μm) Q3160	(No. p/tablet) 6726	(No. p/tablet) 2005	(No. p/kg) 5611434	(No. p/kg) -	ZA ZA ZA MI ZA
Q3886	-	1.00	439 -	186	ΖΑ ΖΑ - μF ΖΑ ΖΑ - μF ΖΑ
ABS (300-5000 μm) Q3160 Q3878	(No. p/tablet) 8968 -	(No. p/tablet) 4011 -	(No. p/kg) - -	(No. p/kg) 5382 2280	ZB ZB ZB MI ZB ZA ZA - µF
Acrylon.Butadi.Styrene to	tal (No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3160	15694	6016	5611434	5382	ZA ZA ZA MI ZA
Q3886	-	1.00	439 -	186	ΖΑ ΖΑ - μF ΖΑ ΖΑ - μF ΖΑ
PA (50-299 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	77
Q153	9.00	-	-	_	ZA - - µf ZA ZC ZA ZA ZB ZA
Q3231	1.00	-	-	-	ZA ZA ZA µF ZA
Q3878	-	10.0	97.6	241442	$ZA ZA - \mu F$
Q3886	-	-	-	186	ZA ZA - µF ZA
PA (300-5000 μm) Q3231	(No. p/tablet) -	(No. p/tablet) 2.00	(No. p/kg) -	(No. p/kg)	ZA ZA ZA µF ZA
Q3878 Q387	- 2 00	-	-	7788	$ZA ZA - \mu F$
0001	2.00	-	-	-	
Polyamide total	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q122	-	1.00	-	-	$ZA - - \mu F ZA$
Q153	9.00	-	-	-	ZC ZA ZA ZB ZA
03878	1.00	2.00	- 97 6	- 249231	ZA ZA ZA µF ZA ZA ZA - uF
Q3886	-	-	-	186	$ZA ZA - \mu F ZA$
Q3887	2.00	-	-	-	
PC (50-299 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3886	-	-	-	186	ΖΑ ΖΑ - μF ΖΑ ΖΑ - μF ΖΑ
PC (300-5000 μm) Q3878	(No. p/tablet) -	(No. p/tablet) 1.00	(No. p/kg) -	(No. p/kg) -	ZA ZA - µF
Polycarbonate total Q3878	(No. p/tablet) -	(No. p/tablet) 11.0	(No. p/kg) -	(No. p/kg) 73136	ZA ZA - µF
Q3886	-	-	-	186	$ZA ZA - \mu F ZA$

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
PE (50-299 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	9.00	2147613	-	
Q110	-	12.0	707921	3341114	ZA ZA ZA AF ZA
Q122	-	15.0	1558470	1762963	- ZB - µF ZB
Q134	-	17.0	4168421	-	ZA ZA - ZA ZA
Q3231	1.00	5.00	507401	1426976	ZA ZA ZA µF ZA
Q3878	-	15.0	15512	60788	ZA ZA - µF
Q3886	-	-	-	186	ZA ZA - µF ZA
Q3887	-	7.00	4030190	4157385	
Q3888b	8.00	15.0	-	-	ZA - - µF
Q3889	-	-	777989	539502	ZC - ZA µF
Q3890	-	6.00	807007	5080593	ZC - ZB ZA ZC
Q3911	-	9.00	-	-	ZB - ZB µF ZB
Q3913	-	9.00	1490142	-	ZA ZA - ZA ZA
Q3917	-	15.0	-	-	ZA ZA ZA µF ZA
Q3932	-	1634	2903587	-	ZB ZB ZB AF ZB
Q3943	-	3.00	-	15794760	ZA - ZB ZB ZB
	=============	==== Statistical	Results =====		
NDA mean	-	10.61	1299420	1883359	
NDA st dev	-	6.10	1196400	2358360	
Coeff Var (%)	-	57.5	92.1	125.2	
N	2	14	11	9	
Median	4.5	10.5	1490142	1762963	
MAD	3.5	4.5	782221	1702175	
Added Number	-	15	4998903	10264701	

PE (300-5000 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	-	50.0	-	
Q122	-	1.00	-	-	ZA - - µF ZA
Q3231	-	10.0	-	-	ZA ZA ZA µF ZA
Q3878	-	5.00	-	5699	ZA ZA - µF

ZA| -| -|µF ZC| -|ZA|µF ZB|ZA|ZA|µF|ZB ZB| -|ZB|µF|ZB ZA|ZA| -|ZA|ZA ZA|ZA|ZA|µF|ZA

Polyethylene total (HD	+LD) (No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)
Q104	-	9.00	2147663	-
Q110	-	12.0	707921	3341114
Q122	-	16.0	1558470	1762963
Q134	-	17.0	4168421	-
Q3231	1.00	15.0	507401	1426976
Q3878	-	20.0	15512	66487
Q3882	-	1.00	-	-
Q3886	-	-	-	186
Q3887	-	7.00	4030190	4157385
Q3888b	8.00	15.0	-	-
Q3889	-	-	777989	539502
Q3890	-	6.00	807007	5080593
Q3911	-	9.00	-	-
Q3913	-	9.00	1490142	-
Q3917	-	15.0	-	-
Q3932	-	1634	2903587	-
Q3943	-	3.00	-	15794760
Q871	567	2224	455515445	6976788
	===============	==== Statistica	al Results =====	=================
NDA mean	-	11.27	1395786	2379800
NDA st dev	-	6.42	1355065	3069872
Coeff Var (%)	-	57.0	97.1	129.0
N	3	16	12	10
Median	8.0	13.5	1524306	2552039
MAD	7.0	4.5	916645	2249044
Added Number		15	4998903	10264701

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
ΡΕΤ (50-299 μm) Q104	(No. p/tablet) -	(No. p/tablet) 5.00	(No. p/kg) -	(No. p/kg) -	
Q110	-	11.0	-	-	ZA ZA ZA AF ZA
Q122	-	11.0	-	-	ZA - - uF ZA
Q134	-	2.00	-	-	ZA ZA - ZA ZA
Q3231	-	2.00	-	2250	ZA ZA ZA µF ZA
Q3878	-	5.00	683	82824	ZA ZA - µF
Q3887	-	18.0	-	-	
Q3888b	-	3.00	-	-	ZA - - µF
Q3890	-	18.0	-	-	ZA - - µF ZA
Q3911	-	8.00	-	-	ZB - ZB µF ZB
Q3913	-	15.0	-	-	ZA ZA - ZA ZA
Q3917	-	9.00	-	-	ZA ZA ZA µF ZA
	================	=== Statistical	Results =====	============	
NDA mean	-	8.34	-	-	
NDA st dev	-	6.52	-	-	
Coeff Var (%)	-	78.1	-	-	
N	-	12	1	2	
Median	-	8.5	683	42537	
MAD	-	4.5	-	40287	
PET (300 5000 um)	(No. p/tablat)	(No. p/tablot)	(No p/kg)	(No p/kg)	
∩3231			(NO. p/kg)	(NO. p/kg)	77 77 77 11
03878	1 00	5.00	_	3700	$2A 2A 2A \mu r \lambda A$
Q3888b	-	1.00	_	-	2Α 2Α μΓ 7Δ - - μΓ
		1.00			
Polyethyleneterephat.	Total (No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	5.00	-	-	
Q110 Q100	-	11.0	-	-	ZA ZA ZA AF ZA
Q122	-	11.0	-	-	$ZA - - \mu F ZA$
Q134	-	2.00	-	-	ZA ZA - ZA ZA
Q3231	-	4.00	-	2250	ZA ZA ZA µF ZA
Q3070 02007	1.00	10.0	003	00023	ZA ZA - µF
Q3007 029996	-	10.0	-	-	
03800	-	4.00	-	-	ZA - - µP
03011	-	8.00	-	-	
Q3911 03013	-	15.0	-	-	20 - 20 µr 20
02017	-	0.00	-	-	ZA ZA - ZA ZA
0971	2 00	9.00	-	-	ZA ZA ZA µr ZA
	3.00	- Statistical	- Resulte		
NDA mean					
NDA st dev	-	6.82	-	-	
Coeff Var (%)	-	73 3	-	-	
N	- 2	12	- 1	2	
Median	2 000	95	683	44436	
MAD	1.000	5.0	-	42186	
Category	-	30	<u>-</u>	-	

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
PLA (50-299 μm) Q3878	(No. p/tablet) -	(No. p/tablet) 5.00	(No. p/kg) 48.8	(No. p/kg) 221306	ZA ZA - µF
PLA (300-5000 μm) Q3878	(No. p/tablet) -	(No. p/tablet) -	(No. p/kg) -	(No. p/kg) 190	ZA ZA - µF
Polyactic Acid total Q3878	(No. p/tablet) -	(No. p/tablet) 5.00	(No. p/kg) 48.8	(No. p/kg) 221496	ZA ZA - µF
PMMA (50-299µm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	-	2937695	-	
Q110	-	-	903210	3840361	ZA ZA ZA AF ZA
Q122	-	-	1363661	2864815	- ZB - µF ZB
Q134	-	-	2344737	-	ZA ZA - ZA ZA
Q3231	4.00	1.00	428905	409406	ZA ZA ZA µF ZA
Q3878	-	60.0	24049	17097	ZA ZA - µF
Q3887	-	-	2997392	1457866	
Q3090	-	-	2074736	4299102	ZC - ZB ZA ZC
03043	-	-	2014130	-	ZA ZA - ZA ZA
03943		- ==== Statistical I	- Resulte =====	9071723	ZAI - ZBIZBIZB
NDA mean			1489059	2192190	
NDA st dev	_	-	1327153	2104095	
Coeff Var (%)	-	-	89.1	96.0	
N	1	2	9	7	
Median	4.0	30.5	1363661	2864815	
MAD	-	29.5	934756	1434347	
Added Number		-	5003367	10040421	
ΡΜΜΑ (300-5000μm) Q3231 Q3878	(No. p/tablet) - -	(No. p/tablet) 2.00 3.00	(No. p/kg) - -	(No. p/kg) - 1897	ZA ZA ZA µF ZA ZA ZA - µF
Polymethylmethacrylat	e total (No. p/table	et)(No. p/tablet)	(No. p/ka)	(No. p/ka)	
Q104		-	2937695	-	
Q110	-	-	903210	3840361	ZA ZA ZA AF ZA
Q122	-	-	1363661	2864815	ZA - - µF ZA
Q134	-	-	2344737	-	ZA ZA - ZA ZA
Q3231	4.00	3.00	428905	409406	ZA ZA ZA µF ZA
Q3878	-	63.0	24049	18996	ZA ZA - µF
Q3887	-	-	2997392	1457866	
Q3890	-	-	608795	4299162	
Q3913	-	-	2074736	-	ZA ZA - ZA ZA
Q3943		-	-	9871725	
Q871	5.00	-	192166942	3040850	
		Ctatiatical	Doculto		
		Statistical	1501040	== 2202705	
NDA mean NDA et dev	-	-	1501040	2082100	
Coeff Var (%)	-	-	103 0	84 G	
N	- 2	- 2	10	۲.0	
Median	4.5	33 0	1719199	2952833	
MAD	0.5	30.0	1164450	1420648	
Coeff Var (%) N Median MAD <mark>Added number</mark>	- 2 4.5 0.5	- 2 33.0 30.0	103.0 10 1719199 1164450 5003367	84.6 8 2952833 1420648 10040421	

Sample QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC	
ΡΡ (50-299 μm) Q104	(No. p/tablet) 5.00	(No. p/tablet) 9.00	(No. p/kg) -	(No. p/kg) -	
Q3231	1.00	14.0	333	2167	ZA ZA ZA uF ZA
Q3878	-	3.00	16000	43501	ZA ZA - uF
Q3888b	4.00	2.00	-	-	ZA - - µF
Q3890	-	1.00	-	-	ZA - - µF ZA
Q3911	-	7.00	-	-	ZB - ZB µF ZB
ΡΡ (300-5000 μm) Q104	(No. p/tablet) 2.00	(No. p/tablet)	(No. p/kg) -	(No. p/kg) -	
Q153		-	-	1.00	ZC ZA ZA ZB ZA
Q3231	-	11.0	-	-	ZA ZA ZA µF ZA
Q3878	-	-	-	3799	ZA ZA - µF
Polypropylene total	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	7.00	9.00	-	-	
02070	1.00	20.0	333 16000	Z107 47204	ZA ZA ZA µF ZA
Q3070	4 00	3.00	10000	47301	ZA ZA - µF
Q3000D	4.00	2.00	-	-	ZA - - µF
Q3090 Q3011	-	7.00	-	-	
Q871	3.00	-	-	-	201 - 100 ht 100
PS (50-299 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	7.00	-	-	
Q110	-	10.0	-	5440512	ZA ZA ZA AF ZA
Q122	-	12.0	-	4187037	ZA - - µF ZA
Q134	-	7.00	-	-	ZA ZA - ZA ZA
Q153	1.00	-	-	-	ZC ZA ZA ZB ZA
Q3231	1.00	-	-	333383	ZA ZA ZA µE' ZA
Q38/8	-	5.00	1/31/	49390	ZA ZA - µŀ
Q3887	-	17.0	-	2040801	ZA ZA ZA AF ZA
Q3000D	0.00	0.00 10.0	-	-	ZA - - µF
Q3090 Q3011	- 2 00	10.0	-	2390710	ZC - ZB ZA ZC
02012	2.00	13.0	-	-	28 - 28 µr 28
03017	-	6.00	-	-	ZA ZA - ZA ZA
03043	-	3.00	-	740370	
Q3943		3.00 ===== Statistica	- I Resulte =====	740379	ZA - ZB ZB ZB
NDA mean		Statistica 8 0/		210718/	
NDA st dev	_	4.46	-	2473047	
Coeff Var (%)	-	49.9	-	117.4	
N	4	12	1	7	
Median	1.5	9.0	17317	2390716	
MAD	0.5	3.0	-	1796321	
Added number	-	15	-	4939222	

PS (300-5000 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3231	-	1.00	-	-	ZA ZA ZA µF ZA
Q3878	-	5.00	-	-	ZA ZA - µF
Q3887	1.00	-	-	-	
Q3888b	1.00	3.00	-	-	ZA - - µF
Q3911	2.00	-	-	-	ZB - ZB µF ZB
Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
-------------------	------------------	---	---------------------	-------------	------------------------
Polystyrene total	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q104	-	7.00	-	-	
Q110	-	10.0	-	5440512	ZA ZA ZA AF ZA
Q122	-	12.0	-	4187037	ZA - - µF ZA
Q134	-	7.00	-	-	ZA ZA - ZA ZA
Q153	1.00	-	-	-	ZC ZA ZA ZB ZA
Q3231	1.00	1.00	-	333383	ZA ZA ZA µF ZA
Q3878	-	10.0	17317	49390	ZA ZA - µF
Q3882	-	6.00	-	-	ZA ZA - µF ZA
Q3887	1.00	17.0	-	2646801	ZA ZA ZA AF ZA
Q3888b	9.00	11.0	-	-	ZA - - µF
Q3890	-	10.0	-	2390716	
Q3911	4.00	13.0	-	-	ZB - ZB µF ZB
Q3913	-	17.0	-	-	ZA ZA - ZA ZA
Q3917	-	6.00	-	-	ZA ZA ZA µF ZA
Q3943	-	3.00	-	740379	
Q871	1.00	-	-	1226149	
	===========	==== Statistical	Results =====		
NDA mean	-	9.17	-	1769320	
NDA st dev	-	4.50	-	1890362	
Coeff Var (%)	-	49.1	-	106.8	
N	6	14	1	8	
Median	1.000	10.0	17317	1808433	
MAD	-	3.0	-	1271552	
Added number		15	-	4939222	
	================	=======================================	===================	===========	

PUR (50-299 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q110	-	2.00	-	-	ZA ZA ZA AF ZA
Q3878	-	20.0	244	123096	ZA ZA - µF
Q3886	-	-	51.0	-	ZA ZA - µF ZA
Q3888b	-	3.00	-	-	ZA - - µF

PUR (300-5000 μm)	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3878	-	3.00	-	20136	ZA ZA - µF
Q3888b	-	1.00	-	-	ZA - - µF

Polyurethane total	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q110	-	2.00	-	-	ZA ZA ZA AF ZA
Q3878	-	23.0	244	143232	ZA ZA - µF
Q3886	-	-	51.0	-	ZA ZA - µF ZA
Q3888b	-	4.00	-	-	ZA - - µF
Q3889	-	8.00	-	-	ZC - ZA µF

PVC (50-299 μm) (No. p/tablet) (No. p/tablet) (No. p/kg) (No. p/kg) Q110 - 5.00 - - ZA Q122 - 7.00 - - ZA	Δ ZA ZA AF ZA Δ - - μF ZA Δ ZA - ZA ZA Δ ZA ZA μF ZA
Q110 - 5.00 ZA Q122 - 7.00 - ZA	Δ ZA ZA AF ZA Δ - - μF ZA Δ ZA - ZA ZA Δ ZA ZA μF ZA
Q122 - 7.00 - ZA	Δ - - μF ZA Δ ZA - ZA ZA Δ ZA ZA μF ZA
	ZA - ZA ZA ZA ZA µF ZA
Q134 - 20.0 ZA	ZA ZA µF ZA
Q3231 1.00 2.00 - ZA	
Q3878 - 20.0 4878 36093 ZA	A ZA − μF
Q3887 - 14.0	
Q3888D - 3.00 - ZA	Δ - - μF
Q3889 - 12.0 ZC	C - ZA μF
Q3890 - 15.0 ZA	Δ - - μF ZA
Q3911 - 1.00 Q3012 - 0.00	
Q3913 - 8.00 ZA	A ZA - ZA ZA
Q3917 - 10.0 ZA	Α ΖΑ ΖΑ μΕ΄ Ζ <i>Ε</i>
======================================	
NDA mean - 9.35	
NDA st dev - 7.77	
Coeff Var (%) - 83.1	
N 1 12 1 1	
Median 1.0 9.0 4878 36093	
MAD - 5.5	
PVC (300-5000 μm) (No. p/tablet) (No. p/tablet) (No. p/kg) (No. p/kg) Q3231 - 4.00 - - ZA Q3888b - 4.00 - - ZA	⊾ ZA ZA μF ZA Δ − − μF
Polyvinyl Chloride total (No. p/tablet) (No. p/tablet) (No. p/kg) (No. p/kg)	
Q110 - 5.00 - ZA	ZA ZA AF ZA
Q122 - 7.00 - ZA	Δ - - μF ZA
Q134 - 20.0 - ZA	A ZA - ZA ZP
Q3231 1.00 6.00 - ZA	ZA ZA µF ZA
Q3878 - 20.0 4878 36093 ZA	A ZA − μF
Q3882 - 6.00 - ZA	$ ZA - \mu F ZP$
Q3887 - 14.0	
Q3888b - 7.00 - ZA	Δ - - μF
Q3889 - 12.0 zc	C - ΖΑ μF
Q3890 - 15.0	
Q3915 - 0.00 ZA	A ZA - ZA ZA
Q3917 - 10.0 ZA	Α ΖΑ ΖΑ μΕ΄ Ζ <i>Ε</i>
======================================	
NDA mean - 8.65	
NDA st dev - 4.76	
Coeff Var (%) - 55.1	
N 1 13 1 1 Madian 10 00 4070 20202	
NIEulali I.U δ.U 4δ/δ 36092 ΜΔD 2.0	
Added number - 16	

Total number of particles Data and Statistics

Total number of particles Data and Statistics

Other polymers (50-299	µm) (No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3878	-	12.0	-	-	ZA ZA - µF
Q3886	-	6.00	255	1305	ZA ZA - uF ZA
Q3888b	1.00	3.00	-	-	7A - - 11F
03889	3.00	11.0	-	5607	Diri pr
03917	-	2 00	-	-	7A 7A 7A 11F 7A
		2.00			Dis Dis Dis µr Dis
Other polymers total	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q3878	-	12.0	-	-	ZA ZA - µF
Q3882	-	4.00	-	-	ZA ZA - µF ZA
Q3886	-	6.00	255	1305	ZA ZA - µF ZA
Q3888b	1.00	3.00	-	-	ZA - - µF
Q3889	3.00	11.0	-	5607	ZC - ZA µF
Q3917	-	2.00	-	-	ZA ZA ZA µF ZA
Total polymers (50-299	µm) (No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q101	2.00 <	< 75.0	-	-	ZA - ZA ZA ZA
Q104	5.00	30.0	5085308	-	
Q110	-	40.0	1611131	12621987	
Q122	-	46.0	2922131	8814815	ZA - - µF ZA
Q134	-	46.0	6513158	-	
Q153	10.0	-	54488	1050768	ZC ZA ZA ZB ZA
Q3231	9.00	24.0	936639	2174182	ZA ZA ZA µF ZA
Q3878	-	170	79268	1006801	
Q3886	-	7.00	306	2050	ZA ZA - uF ZA
Q3887	-	57.0	7027582	8262053	, .
Q3889	3.00	31.0	777989	545110	ZC - ZA uF
Q3890	-	50.0	1415802	11770471	
Q3911	2.00	38.0	-	-	
Q3913		49.0	3564878	-	
Q3917	-	42.0	-	-	
Q3936	-	-	129845	-	ZA ZA ZA ZA ZA
Q3943	-	6.00	-	26406864	
Q661	58.0	150	306208	1240116	7.A 7.A 7.A MT 7.A
	================	==== Statistical F	Results =====	=========	
NDA mean	-	39.86	1011523	2068174	
NDA st dev	-	18.36	1614963	3539966	
Coeff Var (%)	-	46.1	159.7	171.2	
Ν	6	16	14	11	
Median	7.0	44.00	1176221	2174182	
MAD	3.5	13.00	1109343	2172132	
Added number	-	76	10002270	25244344	
	=======================================		=======================================	=========	

Total polymers (300-500)	0 μm) (No. p/tablet) (No.	p/tablet)	(No. p/kg)	(No. p/kg)	
Q101	2.00 <	2.00 <	-	-	
Q104	2.00	-	50.0	-	
Q122	-	1.00	-	-	ZA - - µF ZA
Q153	-	-	-	1.00	ZC ZA ZA ZB ZA
Q3231	-	32.0	-	-	ZA ZA ZA µF ZA
Q3878	1.00	22.0	-	45588	
Q3887	3.00	-	-	-	
Q3911	2.00	-	-	-	
Q3922	-	-	4722	1539	
Q3936	-	-	3681	-	ZA ZA ZA ZA ZA
Q661	222	97.0	4086	60174	ZA ZA ZA MI ZA

Total number of particles Data and Statistics

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
Total polymers	(No. p/tablet)	(No. p/tablet)	(No. p/kg)	(No. p/kg)	
Q101	2.00	<i 75.0<="" td=""><td>-</td><td>-</td><td>ZA - ZA ZA ZA</td></i>	-	-	ZA - ZA ZA ZA
Q104	7.00	30.0	5085358	-	
Q110	-	40.0	1611131	12621987	
Q122	-	47.0	2922131	8814815	ZA - - µF ZA
Q134	-	46.0	6513158	-	
Q153	10.0	-	54488	1050769	ZC ZA ZA ZB ZA
Q3160	15694	6016	5611434	5382	
Q3231	9.00	56.0	936639	2174182	ZA ZA ZA µF ZA
Q3877b	393	137	3073149	2097999	ZB ZB ZB MI ZB
Q3878	1.00	192	79268	1052391	
Q3882	-	17.0	-	-	ZA ZA - µF ZA
Q3886	-	7.00	306	2050	ZA ZA - µF ZA
Q3887	3.00	57.0	7027582	8262053	
Q3888b	22.0	46.0	-	-	
Q3889	3.00	31.0	777989	545110	ZC - ZA µF
Q3890	-	50.0	1415802	11770471	
Q3911	4.00	38.0	-	-	
Q3913	-	49.0	3564878	-	
Q3917	-	42.0	-	-	
Q3922	-	-	4722	1539	
Q3926	-	49.0	156882	305217	ZA ZA ZA µF
Q3932	-	1634	2903587	-	
Q3936	7.00	19.0	133526	-	ZA ZA ZA ZA ZA
Q3940	277	255	20054	-	
Q3943	-	6.00	-	26406864	
Q661	280	247	310296	1300289	ZA ZA ZA MI ZA
Q871	579	2224	647682387	11243787	
	======	==== Statistical	Results =====		
NDA mean	6.38	40.2	1344449	941297	
NDA st dev	9.31	25.0	2086266	2173988	
Coeff Var (%)	145.7	62.2	155.2	231.0	
Ν	14	25	21	16	
Median	9.5	49.0	1415802	1699144	
MAD	7.5	19.0	1411080	1695428	
Added number	-	76	10002270	25244344	

1

20

30

NDA mean

10

Reported Values

0

-5

0391 01 0212 0388 012 0388 0392 0391 0388 0389 0389 013 0389

1

0.5

0

0

Reported Values

Total number of particles Histogram+PDFs and Ranked overview

Total number of particles Histogram+PDFs and Ranked overview

Total mass of plastic particles Analysis DE17 2020.1

Total mass of plastic particles Summary Statistics

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP001SW											
Total Polymers	0.067	(mg/kg)		0.137	203.5	8	1	0.105	0.096	0.0673	0.0605

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP002SW											
Total Polymers	0.045	(mg/kg)		0.023	50.3	9	1	0.052	0.019	0.0450	0.0094

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- tainty
QMP003MS											
Polyethylene total (HD+LD)	755	(mg/kg)		655	86.8	7	0	846	464	755	310
Total Polymers	1333	(mg/kg)		1245	93.4	11	0	1370	876	1333	469

Sample/ Determinand	Assigned Value	Units	Total Error	NDA st.dev	NDA rel. st.dev (%)	Nobs numerical	Nobs LCV	Median	MAD	Model Mean	Uncer- Tainty
QMP004BT											
Total Polymers	6361	(mg/kg)		7610	119.6	10	0	7436	5453	6361	3008

Total mass of plastic particles Data and Statistics

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
Polyamide total Q3175	(mg/tablet) 0.080	(mg/tablet) 0.080	(mg/kg) 20.5	(mg/kg) -	QM ZN HO TD ZB
Polycarbonate total Q980	(mg/tablet) 0.007 <	(mg/tablet) 0.007 <	(mg/kg) 1.00 <	(mg/kg) 1.00 <	- - ZC PY ZA
ΡΕ (50-299 μm) Q3932	(mg/tablet) -	(mg/tablet) -	(mg/kg) 846	(mg/kg) 33050	ZA ZA ZA AF ZA
Polyethylene total (HD+LD)	(mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
H221	-	0.001	522	1093	- - ZA PY ZA
Q3175	0.060	0.050	152	-	QM ZN HO TD ZB
Q3189	-	0.002	300	307	ZB ZB ZB PY ZB
Q3877D	-	-	936	1356	ZA ZA ZA PY ZA
0871	-	- 0.020	040 2133	325	
Q980	0.160 <	0.160 <	1310	4030	- - ZC PY ZA
==	=============	=== Statistical F	Results ======	=========	
NDA mean	-	-	754.9	-	
NDA st dev	-	-	655.4 96.9	-	
N	- 1	- 4	7	- 6	
Median	0.0600	0.0110	, 846.0	1224.5	
MAD	-	0.0093	464.0	908.5	
==		=============	=============	=======	
Polyethyleneterephat. Total	(mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
H221 03175	- 0 380	0.001	- 71.0	-	- - ZA PY ZA
03189	0.300	0.440	1 56	-	QM ZN HO TD ZB ZB ZB ZB PY ZB
Q980	0.020 <	0.020 <	5.00 <	170	- - ZC PY ZA
Polymethylmethacrylate tot	al (ma/tablat)				
1 orginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourginiourgi	ai uno/rabien	(mg/tablet)	(ma/ka)	(ma/ka)	
H221	0.000	(mg/tablet) 0.000	(mg/kg) 1140	(mg/kg) 1176	- - ZA PY ZA
Q3189	0.000 0.000	(mg/tablet) 0.000 -	(mg/kg) 1140 185	(mg/kg) 1176 286	- - ZA PY ZA ZB ZB ZB PY ZB
H221 Q3189 Q980	0.000 0.000 - 0.005 <	(mg/tablet) 0.000 - 0.005 <	(mg/kg) 1140 185 1330	(mg/kg) 1176 286 1170	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA
H221 Q3189 Q980 Added mass	0.000 - 0.005 <	(mg/tablet) 0.000 - 0.005 < -	(mg/kg) 1140 185 1330 2052	(mg/kg) 1176 286 1170 1406	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA
H221 Q3189 Q980 Added mass	(mg/tablet) 0.000 - 0.005 < -	(mg/tablet) 0.000 - 0.005 < - (mg/tablet)	(mg/kg) 1140 185 1330 2052 (mg/kg)	(mg/kg) 1176 286 1170 1406	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA
Added mass Polypropylene total Q3175	(mg/tablet) 0.000 - 0.005 < - - (mg/tablet) 0.020 <	(mg/tablet) 0.000 - 0.005 < - (mg/tablet) 0.020 <	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 <	(mg/kg) 1176 286 1170 1406 (mg/kg)	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA
A221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980	(mg/tablet) 0.000 - 0.005 < - (mg/tablet) 0.020 < 0.030 <	(mg/tablet) 0.000 - 0.005 < - (mg/tablet) 0.020 < 0.030 <	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 <	(mg/kg) 1176 286 1170 1406 (mg/kg) - 5.00 <	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN HO TD ZB - - ZC PY ZA
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total	(mg/tablet) 0.000 - 0.005 < - (mg/tablet) 0.020 < 0.030 < (mg/tablet)	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet)	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 0.020	(mg/kg) 1176 286 1170 1406 (mg/kg) - 5.00 < (mg/kg) 1400	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN HO TD ZB - - ZC PY ZA
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total H221 O3175	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) -	(mg/tablet) 0.000 - 0.005 < - (mg/tablet) 0.020 < 0.030 < (mg/tablet) 0.012 0.050	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 34.2 < 0.010 <	(mg/kg) 1176 286 1170 1406 (mg/kg) 5.00 < (mg/kg) 1189	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN HO TD ZB - - ZC PY ZA - - ZA PY ZA
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total H221 Q3175 Q3189	(mg/tablet) 0.000 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) - 0.010 <	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) 0.012 0.050 0.002	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 34.2 < 0.010 <	(mg/kg) 1176 286 1170 1406 (mg/kg) 5.00 < (mg/kg) 1189 - 345	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN H0 TD ZB - - ZC PY ZA - - ZA PY ZA QM ZN H0 TD ZB ZB ZB ZB DY ZP
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total H221 Q3175 Q3189 Q3877b	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) - 0.010 < -	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) 0.012 0.050 0.002	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 34.2 < 0.010 < _	(mg/kg) 1176 286 1170 1406 (mg/kg) - 5.00 < (mg/kg) 1189 - 345 1223	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN HO TD ZB - - ZC PY ZA QM ZN HO TD ZB ZB ZB ZB PY ZB ZA ZA ZA PY ZA
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total H221 Q3175 Q3189 Q3877b Q871	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) - 0.010 < - 0.390	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) 0.012 0.050 0.002 - 0.027	(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 34.2 < 0.010 < - 8.07	(mg/kg) 1176 286 1170 1406 (mg/kg) - 5.00 < (mg/kg) 1189 - 345 1223 3222	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN H0 TD ZB - - ZC PY ZA - - ZA PY ZA QM ZN H0 TD ZB ZB ZB ZB PY ZB ZA ZA ZA PY ZA
H221 Q3189 Q980 Added mass Polypropylene total Q3175 Q980 Polystyrene total H221 Q3175 Q3189 Q3877b Q871 Q980	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) - 0.010 < - 0.390 0.016 <	(mg/tablet) 0.000 - 0.005 < (mg/tablet) 0.020 < 0.030 < (mg/tablet) 0.012 0.050 0.002 - 0.027 0.006	<pre>(mg/kg) 1140 185 1330 2052 (mg/kg) 0.020 < 5.00 < (mg/kg) 34.2 < 0.010 < - 8.07 3.00 <</pre>	(mg/kg) 1176 286 1170 1406 (mg/kg) - 5.00 < (mg/kg) 1189 - 345 1223 3222 60.0	- - ZA PY ZA ZB ZB ZB PY ZB - - ZC PY ZA QM ZN H0 TD ZB - - ZC PY ZA QM ZN H0 TD ZB ZB ZB ZB PY ZB ZA ZA ZA PY ZA - - ZC PY ZA

Sample	QMP001SW	QMP002SW	QMP003MS	QMP004BT	MIC
Polyvinyl Chloride total	(mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
H221	0.001	0.019	78.0	398	- - ZA PY ZA
Q3175	0.100 <	0.100 <	0.100 <	-	QM ZN HO TD ZB
Q3189	-	0.038	7.41	-	ZB ZB ZB PY ZB
Q3877b	-	-	434	8437	ZA ZA ZA PY ZA
Q980	0.018	0.042	60.0	8900	- - ZC PY ZA
Added mass	-	0.0173	-	-	
Total Polymers (50-299 μm	n) (mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
Q3934	5.70	22.7	2253	60.6	
Q3936	-	-	243	-	
Total Polymers (300-5000)	um) (mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
Q3934	-	-	1308	-	
Q3936	-	-	6.92	-	
Total Polymers	(mg/tablet)	(mg/tablet)	(mg/kg)	(mg/kg)	
H221	0.001	0.033	1740	3856	- - ZA PY ZA
Q3175	0.520	0.620	244	-	QM ZN HO TD ZB
Q3189	-	0.052	494	938	ZB ZB ZB PY ZB
Q3877b	-	-	1370	11016	ZA ZA ZA PY ZA
Q3929	2.00 <1	2.00 <	-	11629	- - ZB GR ZA
Q3932	-	-	846	33050	
Q3934	5.70	22.7	3561	60.6	
Q3935	0.050	1.01	486	377	ZA ZA ZA ZA ZA
Q3936	0.023	0.045	250	-	
Q3941	0.160	0.180	2161	11844	ZA ZA ZA GR ZA
Q871	0.390	0.047	2141	3547	
Q980	0.018	0.048	2700	14330	
=		Statistical H 0.0450	<pre>Kesults ======</pre>		
	0.00/3	0.0450	1333	0301 7640	
NDA SLUEV	0.1370	0.0227	1245	1010	
	203.5 Q	5U.3 0	93.4	119.0	
Median	0 1051	9 0.0520	11 1370	7/36	
ΜΔΠ	0.1051	0.0320	876	5453	
Added mass	0.0307	0.0687	2952	4609	
=	=======================================	===================		========	

Total mass of plastic particles Data and Statistics

Total mass of plastic particles Histogram+PDFs and Ranked overview

Appendix B Additional method information Reported filtration methods

Lab code	Applied method	Comments
H221	-	
0101	ZA	1st step stainless steel filter - 2nd step Nile Red PTFE filter
Q110	ZA	Filtration on cellulose nitrate filter (12µm)
0122	ZA	For the biota sample, after oxygene peroxide digestion, samples were vacuum
		filtered
Q134	ZA	Vacuum filtration
Q153	ZC	0.2 micron filters for tablet and sediment. 2.7 micron for fish
Q3160	ZA	filtering through a glass fiber filter (e.g. GF/F 0.7µm/pore, Whatman) using glass
		filtration system
Q3175	Quartz filter QM-A,	
	2.2 pore size	
Q3189	ZB	Vacuum filtration on 27µm mesh steel filters in custom stainless steel filtration
		apparatus
Q3231	ZA	25 μm stainless steel mesh sieve
Q3877b	ZB	Filtration of the supernatant after density separation on a 47mm quartz filter
		calcined at 450°C.
Q3878	ZA	Filtered on Si filter with 50um pore size
Q3882	ZA	40-45µm filter, The Mesh Company #300 Mesh SS316 Grade Woven Wire Mesh
Q3886	ZA	Whatman 540, pore size diameter 8 micron
Q3887	ZA	20 um stainless steel filter, prior to analysis: 0.45 um gridded filter
Q3888b	ZA	Filtration of 1L of spiked ultra-pure water
Q3889	ZA	Tablets: 1) 50 ml H2O closed with aluminium foil; 2) blister inside and closed for
		30 min; 3) filtration 0.7
Q3889	ZB	Sediment: 100 ml KOH 10% 6h/60°C; 2)Overnight room temp; 3)Centrifugation
		4000rpm/10min; 4) Filtration 0.7 um; 5) 40 ml HNO3 20% 1h; 6) filtration; 7)
		Overnight 60°C
Q3889	ZC	Biota: 400 ml NaCl (120 g/L) shaking for 30 min; 2) left to rest overnight; 3)
0.0000	70	Filtration 0.7 um; 4) 40 mi HNO3 20% 1n; 5) Filtration; 6) Overnight 60°C
Q3890	20	Tablets: anodisc 25mm 0.1um pore size
Q3890	20	Sediment & biota: nylon net 20µm 4/mm, then anodisc 0.1µm 25mm
Q3911	ZB	Flitration through 5.0µm sliver membrane
Q3913	ZA	Vacuum pump, PTFE filters d = 4.5 cm & amp; pore = 10 um
Q3917	ZA	Collected solids were passed through PTFE flitters (pore size 0.2 µm).
Q3926	ZA	Versume filtration with stainless starl funnel and were concentrated on a
Q3935	ZA	vacuum nitration with stainless steel funnel and were concentrated on a
02026	74	Motallic mosh (62 and 250 µm)
02041	ZA 74	For OM001 and OM002 filtration system and Colullose mixed filters 0.8 um
02042	ZA 74	For QWOOT and QWOOZ initiation system and Celuliose mixed miters 0.8 um
0661	ZA	Signed for 5000 200, 50 µm
0001		The tablets were discolved in MilliQ water filtered through a 1um GEE, then
4900		extracted with ASE (pressurised liquid extraction). The extract was then
		nyrolyzed for analysis (Pyr-GC-MS)
0980	-	For the soil sediment, fish, an aliguot was directly ASE extracted with the extract
		then pyrolyzed for analysis.

ZA, ZB or ZC means that the laboratory has use another filtration method than in options available, which is then described in the column comments.

Reported 30	.paradon methods	
Lab code	Applied method	Comments
Q110	ZA	Density separation by KOH 10% and sodium tungstate 700g/L
		For sediment sample density separation was acheived with NaCl (one
Q122	ZB	time) and NaI (twice)
Q134	ZA	Sodium chloride saturated solution
Q153	ZA	Only for sediment. Zinc chloride (1.5 g/mL density)
		Sodium chloride solution (NaCl – 1.2 g cm-3) to soil sample volume in a
Q3160	ZA	1:3 ratio
Q3175	ZnCl2 solution	-
		CaCl2 solution (1.45g/cm3). Sample stirred then 4-12h settling prior to
Q3189	ZB	decantation, 4 repetitions.
Q3231	ZA	Nal 1.8 g/mL on sample QMP003MS (sediment)
		With CaCl2 1,4 density after H202 digestion (soil and sediment) or KOH
Q3877b	ZB	(fish)
Q3878	ZA	With Nal solution, repeated three times
Q3882	ZA	Density separation with zinc chloride of soil samples.
		250 mL NaCl (1.2g/mL) for QMP001SW, QMP002SW and QMP004BT.
Q3886	ZA	For QMP003SW, 250 mL 4.4M Nal was used.
		For all spoil samples, 250 mL 4.4M Nal was used in density separation.
Q3886	ZA	The process was repeated 2x.
		Soils and sediment were separated using ZnCl2 approx. 1.6 g/mL
Q3887	ZA	according to Coppock et al. 2017
Q3913	ZA	Nal, centrifugation 1000 rpm (216 x g-force) for 5 min
		Density separation with 6.7 M sodium iodine (Nal) solution was
Q3917	ZA	conducted with lid.
Q3926	ZA	With NaCl
		Particle suspension using a supersaturated NaCl solution with an
Q3935	ZA	approximate density of 1.2 g/mL
		3 extractions w. saturated NaCl; centrifugation 15 minutes, 4,000 RPM.
Q3941	ZA	only supernatant
Q661	ZA	Water, NaCl (density 1.2 g/mL), NaI (density 1.6 g/mL)

Reported separation methods

ZA, ZB or ZC means that the laboratory has used another filtration method than in options available, which is then described in the column comments.
Lab code	Applied method	Comments
		ASE-extraction including a clean-up with methanol and extraction with
H221	ZA	dichloromethane
Q101	ZA	first step KOH 10% / 2nd step: H2O2 15%
Q110	ZA	H2O2 and KOH digestion and sifting
Q122	ZA	H2O2 (30%) digestion at 50 °C for max 5 days
Q153	ZA	Chemical digestion (KOH:NaClO) for sediment and fish
		Fish:digestion of soft tissue with Hydrogen peroxide 30%. 1:1 ratio with
Q3160	ZA	sample Wg. oven at 40ºC 48h
Q3175	H2O2 30% @ 40°C	-
Q3189	ZB	Sample solved in 10% KOH solution agitated at 60C for 48h.
Q3231	ZA	6.66 % KOH (m/m) with surfactant
Q3877b	ZB	H202 digestion (soil and sediment) or KOH (fish)
Q3878	ZA	Enzymatic digestion (protease, lipase, amylase) for fish
Q3887	ZA	Hydrogen peroxide at 40 degrees in oscillating incubator
		1)100 ml KOH 10% 6h/60ºC;2)Overnight
Q3889		20ºC;3)Centrif.4000rpm/10min;4)0.7um;5)40mlHNO3 20%1h;6)60ºC
		400 ml NaCl (120 g/L) shaking for 30 min; 2) quiet 30 min; 3) Filtration 0.7
Q3889		um; 4) Overnight 60ºC
Q3890	ZA	15mL H2O2 30% v/v 40°C,
Q3890	ZB	90mL H2O2 30% v/v 40°C, SDS 5% w/v
Q3911	ZB	Decon % + Ethanol + MQ water
		30% H2O2 with 0.05 M Iron (II) Sulfate solution was added to digest
Q3917	ZA	natural organic matters.
Q3926	ZA	Hydrogen peroxide 20 % and KOH
		Microwave assisted digestion using SRC technology and diluted HNO3,
Q3929	ZB	employing the UltraWAVE system.
		Were concentrated on the cellulose acetate filter using a dosing bottle
Q3935	ZA	with ultra pure water MilliQ
Q3936	ZA	Digestion of biogenic material with 30% H2O2, 45 °C, 72h
Q3941	ZA	Filters washed with destilled water
Q3943	ZB	KOH digestion for fish sample
Q661	ZA	Hydrogen Peroxyde (10%)

Reported clean-up methods

ZA, ZB or ZC means that the laboratory has use another filtration method than in options available, which is then described in the column comments.

Lab code	Applied method	Comments
H221	Pyr-GC-MS	
Q101	ZA	μFTIR + manual count on FI-microscope
Q110	μ-FTIR	
Q122	μFTIR	
	ZA	Manual counting with stereomicroscope and polymer identification with
Q134		μ-FTIR
Q153	ZB	Micro-FTIR FPA for tablet. micro-FTIR for sediment and fish
Q3160	Microscopy	
Q3175	TED-GC-MS	
Q3189	Pyr-GC-MS	
Q3231	μFTIR	
	Microscopy & Pyr-GC-	
Q3877b	MS	
Q3878	μFTIR	
Q3882	μFTIR	
Q3886	μFTIR	
	Microscopy & ATR-	
Q3887	FTIR	
Q3888b	μFTIR	
Q3889	μFTIR	
Q3890	μFTIR	[μF], [RA], [MI]
Q3911	μFTIR	
Q3913	ZA	uFTIR, Nile Red and manual microscope counting under fluorescence
Q3917	μFTIR	
Q3926	μFTIR	
Q3929	Gravimetric	
Q3932	ATR-FTIR	
Q3935	ZA	Tests are being carried out for the identification analysis, but will not be ready by the deadline
03936	74	Fluorescence microsopy (40X magnification) using the dye Nile red
03941	Gravimetric	
03943	ZB	Polarized optical microscopy (MOLP and image analysis) and micro-
		Raman confirmation
Q661	Microscopy	
Q980	Pyr-GC-MS	

Reported determination methods

ZA, ZB or ZC means that the laboratory has use another filtration method than in options available, which is then described in the column comments.

Appendix C NDA statistics Normal Distribution Approximation (NDA)

Interlaboratory studies like those of WEPAL-QUASIMEME frequently give rise to datasets that have complex distributions including excessive tailing and multiple modes. Consequently, sophisticated statistical methods are required to obtain meaningful assessments. A methodology is needed that does not rely on arbitrary outlier removal or subjective manual interpretations. The model that is chosen calculates population characteristics (mean and standard deviation) from experimental datasets as described by Cofino et al. (2000) and Molenaar et al. (2018).

The statistical principles of the model that we use to assess the data are outlined in two steps. Firstly, the full model is described, thereafter a description is given of the way the model is implemented for the assessment of the data in WEPAL and Quasimeme.

We assume that each laboratory i submits a result given by a probability density function q_i . We start thus from a set of probability density function q_i . i=1,...,N. We set ourselves to establish the average probably density function \bar{q} that best describes the set.

It is insightful to make at this point an analogy with the calculation of the arithmetic mean of a set of data $a_i, i = 1, ..., N$. The average \bar{a} can be defined as the point that minimises the sum of the squared Euclidean distances $d(\bar{a}, a_i)$ to the given data. This can be accomplished by equating the first derivative of $\sum_{i=1}^{N} d^2(\bar{a}, a_i) = \sum_{i=1}^{N} (\bar{a} - a_i)^2$ with respect to \bar{a} to zero. One readily finds the well known expression $\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i$

In a similar manner, we construct the average probability density function \bar{q} of the set of probability density functions $q_i, i = 1, ..., N$. We define a measure d(p,q) for the distance between two probability density functions p and q. We obtain \bar{q} by minimising the sum of the square distances from each probability density function q_i to \bar{q} , thus by equating the first derivative of $\sum_{i=1}^n d(\bar{q}, q_i)^2$ with respect to \bar{q} to zero. The calculation itself is extensive and not given here. The mean and standard deviation of the population are calculated using the first and second moments of the probability density function \bar{q} . The variance obtained from the second moment comprises both a within-laboratory and between-laboratory component.

In WEPAL and Quasimeme, laboratories report single data, we have no information about the underlying probability function. To cope with this problem we use a specific implementation of the model: the so-called Normal Distribution Approximation (NDA). The NDA approach is parametrised to reproduce the population characteristics of truly normal distributions, and is a robust method to evaluate interlaboratory studies.

The NDA approach has been devised using a set of normal distributions $q_i = N(\mu_i, \sigma), i = 1, ..., N$. We assume thus that all normal distributions have the same standard deviation σ . The expected values μ_i are also taken to be normally distributed: $\mu_i = N(\bar{\mu}, S)$. It appears that the mean $\bar{\mu}$ and the standard deviation S of the normal distribution describing the population can be exactly reproduced when $\sigma = 0.78 * S$. In the NDA method, the standard deviation S is calculated directly from the total variance, no distinction between within-laboratory and between-laboratory components is made.

In practice, we have N laboratories each reporting a single value. This gives rise to a dataset x_i , i = 1, ..., N. We calculate the population standard deviation from this dataset using the robust estimate S=1.4826*MAD (MAD: median of absolute standard deviations). The normal distributions associated with the data x_i are estimated by $q_i = N(x_i, 0.78S) = N(x_i, 1.156*MAD)$. We calculate the average probability density function \overline{q} of the set of normal distributions qi as described above. The mean

and standard deviation of the interlaboratory study are obtained using the first and second moments of the average probability density function \overline{q} .

The NDA-mean (assigned value)

The NDA mean is centered around the highest density of values. Unless otherwise stated, the assigned value represents the consensus value of *all* data. Although *all* data are included in the assessment, those values that lie some distance from the NDA mean contribute less to the mean than values which occur at or near the mean.

With the NDA model, mean and standard deviation are calculated (under special conditions, see indicative values) using all reported data when at least 4 results are left after removal of reported 'lower than' (<) and 0 (=zero) values. No outliers are removed